【題目】如圖,在中,,,.動點邊上,以點為圓心,長為半徑的分別交、于點,連接

若點邊上的中點(如圖),請你判斷直線的位置關(guān)系,并證明你的結(jié)論;

時(如圖),請你求出此時弦的長.

【答案】(1) 直線相切,理由詳見解析;(2)

【解析】

(1)直線CD與⊙O相切,連接OD,可證得∠CDO=90°,則直線CD與⊙O相切.
(2)過點C作CF⊥AB于點F,根據(jù)已知條件,可求出在三角形ABC中,AB=4.又∠BDC=45°,所以△DCF為等腰直角三角形,DF=CF,在Rt△BCF中,可求BF=,CF=3=DF,所以AD可用求差法進行求解.

解:直線相切.

證明:如圖,連接

,點邊的中點,

,

,

;

,

,

,

直線相切.

如圖,過點于點

,

;

,

;

中,可求,

中,可求,

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,的半徑長為,垂直弦于點,的延長線交于點,與過點的切線交于點,已知

,求、的長;

的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知△ABC,以AB為直徑的⊙O分別交AC于D,BC于E,連接ED,若ED=EC.

(1)求證:AB=AC;

(2)若AB=4,BC=,求CD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解答下列問題:

在一個不透明的口袋中有個紅球和若干個白球,這些球除顏色不同外其他都相同,請通過以下實驗估計口袋中白球的個數(shù):從口袋中隨機摸出一球,記下顏色,再把它放回袋中,不斷重復上述過程,實驗總共摸了次,其中有次摸到了紅球,那么估計口袋中有白球多少個?

請思考并作答:

在一個不透明的口袋里裝有若干個形狀、大小完全相同的白球,在不允許將球倒出來的情況下,如何估計白球的個數(shù)(可以借助其它工具及用品)?寫出解決問題的主要步驟及估算方法,并求出結(jié)果(其中所需數(shù)量用、等字母表示).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象經(jīng)過點A-26),且與x軸相交于點B,與正比例函數(shù)y=3x的圖象交于點C,點C的橫坐標為1

1)求k、b的值;

2)若點Dy軸上,且滿足SCOD=SBOC,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(0,3)、B(3,0),以點B為圓心、2為半徑的⊙B上有一動點P.連接AP,若點CAP的中點,連接OC,則OC的最小值為(  )

A. 1 B. ﹣1 C. D. 2﹣1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,△ABC中,AC=BC,以BC為直徑的⊙OAB于點D,過點DDE⊥AC于點E,交BC的延長線于點F

求證:

1AD=BD

2DF⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】書店老板去圖書批發(fā)市場購買某種圖書,第一次用 1200 元購買若干本,按 每本 10 元出售,很快售完.第二次購買時,每本書的進價比第一次提高了 20%,他用1500 元所購買的數(shù)量比第一次多 10 本.

1)求第一次購買的圖書,每本進價多少元?

2)第二次購買的圖書,按每本 10 元售出 200 本時,出現(xiàn)滯銷,剩下的圖書降價后全部 售出,要使這兩次銷售的總利潤不低于 2100 元,每本至多降價多少元?(利潤=銷售收入一進價)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,我們定義直線為拋物線、b、c為常數(shù),夢想直線;有一個頂點在拋物線上,另有一個頂點在y軸上的三角形為其夢想三角形”.

已知拋物線與其夢想直線交于A、B兩點A在點B的左側(cè),與x軸負半軸交于點C

填空:該拋物線的夢想直線的解析式為______,點A的坐標為______,點B的坐標為______;

如圖,點M為線段CB上一動點,將AM所在直線為對稱軸翻折,點C的對稱點為N,若為該拋物線的夢想三角形,求點N的坐標;

當點E在拋物線的對稱軸上運動時,在該拋物線的夢想直線上,是否存在點F,使得以點AC、E、F為頂點的四邊形為平行四邊形?若存在,請直接寫出點E、F的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案