【題目】從一個等腰三角形紙片的頂角頂點出發(fā),能將其剪成兩個等腰三角形紙片,則原等腰三角形紙片的頂角等于( )

A.90°B.72°C.108°D.90°108°

【答案】D

【解析】

由題意,等腰△ABC中,從頂點A出發(fā)將△ABC剪成兩個三角形,則剪痕必與底邊BC相交,設(shè)交于點D.

當(dāng)∠C=∠ADC時,此時∠B=∠ADC,不存在;

②當(dāng)∠ADC=∠CAD時,此時∠ADB=180°-∠ADC>∠BAC-∠CAD=∠BAD,且∠B≠∠ADB,則要使△ABD為等腰三角形,只有∠B=∠BAD,如圖,設(shè)∠B=x,則∠C=∠BAD=x,∠ADC=∠CAD=2x,由∠B+∠BAC+∠C=180°,x+3x+x=180°,則x=36°,則∠BAC=3x=108°;

當(dāng)∠C=∠CAD時,若要使△ABD為等腰三角形,當(dāng)∠B=∠BAD時,如圖,此時∠B=∠BAD=∠C=∠CAD,∠B+∠BAC+∠C=180°,4∠B=180°,∠B=45°,則∠BAC=90°;當(dāng)∠BAD=∠ADB時,此時圖形同②中成立時的情況.

綜上,∠BAC=90°108°.

故選D.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,點DBC邊上一點,∠1=∠2=∠3,ACAE.

求證:△ABC≌△ADE(填空)

證明:∵∠2+E+AFE=180° ( )

3+C+CFD=180°(同理)

又∵∠2=∠3( )

AFE=CFD( )

∴∠E=_________.

∵∠1=∠2(已知)

∴∠1+CAD=∠2+_______.

即∠BAC=DAE

在△ABC和△ADE

∴△ABC≌△ADE( ).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點D為AB邊上的中點,點前EAD的中點,為正三角形,給出下列結(jié)論,①,,④若,點上一動點,點、邊的距離分別為,,則的最小值是3.其中正確的結(jié)論是_________(填寫正確結(jié)論的番號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某省為推廣新能源汽車,計劃連續(xù)五年給予財政補貼.補貼開始時間為年度,截止時間為年度.補貼期間后一年度的補貼額均在前一年度補貼額基礎(chǔ)上遞增.計劃前三年,每年度按固定額度億元遞增;后兩年均在上一年的基礎(chǔ)上按相同增長率遞增.已知年度計劃補貼額為億元.

年度計劃補貼額比年度至少增加,求的取值范圍;

若預(yù)計這五年補貼總額比年度補貼額的倍還多億元,求后兩年財政補貼的增長率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,AB=AC=2,∠B=40°,點D在線段BC上運動(點D不與點B、C重合),連接AD,作∠ADE=40°,DE交線段AC于點E

1)當(dāng)∠BDA=115°時,∠EDC=______°,∠AED=______°;

2)線段DC的長度為何值時,ABD≌△DCE,請說明理由;

3)在點D的運動過程中,ADE的形狀可以是等腰三角形嗎?若可以,求∠BDA的度數(shù);若不可以,請說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點.
(1)在圖1中以格點為頂點畫一個面積為10的正方形;
(2)在圖2中以格點為頂點畫一個三角形,使三角形三邊長分別為2、、;
(3)如圖3,點A、B、C是小正方形的頂點,求∠ABC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】把球放在長方體紙盒內(nèi),球的一部分露出盒外,其截面如圖所示,已知EF=CD=4 cm,則球的半徑長是( 。

A. 2cm B. 2.5cm C. 3cm D. 4cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值:

1)(2x+y2y2x+y),其中x,y=﹣1

2[a2b2+a2b)(a+2b)﹣2a2ab]÷2a,其中a3b2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖為二次函數(shù)的圖象,則下列說法:①;;;;,其中正確的個數(shù)為(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

同步練習(xí)冊答案