【題目】如圖,在網(wǎng)格紙中,、都是格點(diǎn),以為圓心,為半徑作圓,用無(wú)刻度的直尺完成以下畫(huà)圖:(不寫(xiě)畫(huà)法)
(1)在圓①中畫(huà)圓的一個(gè)內(nèi)接正六邊形;
(2)在圖②中畫(huà)圓的一個(gè)內(nèi)接正八邊形.
【答案】(1)見(jiàn)解析;(2)見(jiàn)解析
【解析】
(1)設(shè)AO的延長(zhǎng)線與圓交于點(diǎn)D,根據(jù)正六邊形的性質(zhì),點(diǎn)D即為正六邊形的一個(gè)頂點(diǎn),且正六邊形的邊長(zhǎng)等于圓的半徑,根據(jù)垂直平分線的性質(zhì)即可確定其它的頂點(diǎn);
(2)先求出內(nèi)接八邊形的中心角,然后根據(jù)正方形的性質(zhì)即可找到各個(gè)頂點(diǎn).
(1)設(shè)AO的延長(zhǎng)線與圓交于點(diǎn)D,
根據(jù)圓的內(nèi)接正六邊形的性質(zhì),點(diǎn)D即為正六邊形的一個(gè)頂點(diǎn),且正六邊形的邊長(zhǎng)等于圓的半徑,即OB=AB,故在圖中找到AO的中垂線與圓的交點(diǎn)即為正六邊形的頂點(diǎn)B和F;同理:在圖中找到OD的中垂線與圓的交點(diǎn)即為正六邊形的頂點(diǎn)C和E,連接AB、BC、CD、DE、EF、FA,如圖①,正六邊形即為所求.
(2)圓的內(nèi)接八邊形的中心角為360°÷8=45°,而正方形的對(duì)角線與邊的夾角也為45°
∴在如②圖所示的正方形OMNP中,連接對(duì)角線ON并延長(zhǎng),交圓于點(diǎn)B,此時(shí)∠AON=45°;∵∠NOP=45°,
∴OP的延長(zhǎng)線與圓的交點(diǎn)即為點(diǎn)C
同理,即可確定點(diǎn)D、E、F、G、H的位置,順次連接,
如圖②,正八邊形即為所求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在矩形ABCD中,AB=6,BC=8,點(diǎn)E是對(duì)角線BD的中點(diǎn),直角∠GEF的兩直角邊EF、EG分別交CD、BC于點(diǎn)F、G.
(1)若點(diǎn)F是邊CD的中點(diǎn),求EG的長(zhǎng).
(2)當(dāng)直角∠GEF繞直角頂點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中與邊CD、BC交于點(diǎn)F、G.∠EFG的大小是否發(fā)生變化?如果變化,請(qǐng)說(shuō)明理由;如果不變,請(qǐng)求出tan∠EFG的值.
(3)當(dāng)直角∠GEF繞頂點(diǎn)E旋轉(zhuǎn),旋轉(zhuǎn)過(guò)程中與邊CD、BC所在的直線交于點(diǎn)F、G.在圖2中畫(huà)出圖形,并判斷∠EFG的大小是否發(fā)生變化?如果變化,請(qǐng)說(shuō)明理由;如果不變,請(qǐng)直接寫(xiě)出tan∠EFG的值.
(4)如圖3,連接CE交FG于點(diǎn)H,若,請(qǐng)求出CF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B是x軸正半軸上的一動(dòng)點(diǎn),以AB為邊作等腰Rt△ABC,使∠BAC=90°,設(shè)點(diǎn)B的橫坐標(biāo)為x,設(shè)點(diǎn)C的縱坐標(biāo)為y,能表示y與x的函數(shù)關(guān)系的圖象大致是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:在平面直角坐標(biāo)系中,拋物線y=ax2﹣2ax+4(a<0)交x軸于點(diǎn)A、B,與y軸交于點(diǎn)C,AB=6.
(1)如圖1,求拋物線的解析式;
(2)如圖2,點(diǎn)R為第一象限的拋物線上一點(diǎn),分別連接RB、RC,設(shè)△RBC的面積為s,點(diǎn)R的橫坐標(biāo)為t,求s與t的函數(shù)關(guān)系式;
(3)在(2)的條件下,如圖3,點(diǎn)D在x軸的負(fù)半軸上,點(diǎn)F在y軸的正半軸上,點(diǎn)E為OB上一點(diǎn),點(diǎn)P為第一象限內(nèi)一點(diǎn),連接PD、EF,PD交OC于點(diǎn)G,DG=EF,PD⊥EF,連接PE,∠PEF=2∠PDE,連接PB、PC,過(guò)點(diǎn)R作RT⊥OB于點(diǎn)T,交PC于點(diǎn)S,若點(diǎn)P在BT的垂直平分線上,OB﹣TS=,求點(diǎn)R的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校準(zhǔn)備購(gòu)進(jìn)一批紅外線測(cè)溫儀和口罩若干包.已知購(gòu)買(mǎi)1個(gè)紅外線測(cè)溫儀和2包口罩共需460元;購(gòu)買(mǎi)2個(gè)紅外線測(cè)溫計(jì)和3包口罩共需880元.
(1)求一個(gè)紅外線測(cè)溫儀和一包口罩的售價(jià)各是多少元;
(2)學(xué)校準(zhǔn)備購(gòu)進(jìn)紅外線測(cè)溫儀20個(gè),口罩若干包(超過(guò)30包).某藥店對(duì)這兩種商品給出優(yōu)惠活動(dòng),活動(dòng)一:購(gòu)買(mǎi)1個(gè)紅外線測(cè)溫儀送1包口罩;活動(dòng)二:購(gòu)買(mǎi)口罩30包以上,超出的部分按售價(jià)的五折優(yōu)惠,紅外線測(cè)溫儀不打折.
①設(shè)購(gòu)買(mǎi)口罩x包,選擇活動(dòng)一的總費(fèi)用為元,選擇活動(dòng)二的總費(fèi)用為元,請(qǐng)分別求出,與x的函數(shù)關(guān)系式;
②學(xué)校購(gòu)買(mǎi)口罩的包數(shù)x在什么范圍內(nèi),選擇優(yōu)惠活動(dòng)一比活動(dòng)二更省錢(qián)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義:有一組對(duì)角互補(bǔ)的四邊形叫做互補(bǔ)四邊形.
概念理解:
①在互補(bǔ)四邊形中,與是一組對(duì)角,若則 _
②如圖1,在中,點(diǎn)分別在邊上,且求證:四邊形是互補(bǔ)四邊形.
探究發(fā)現(xiàn):如圖2,在等腰中,點(diǎn)分別在邊上, 四邊形是互補(bǔ)四邊形,求證:.
推廣運(yùn)用:如圖3,在中,點(diǎn)分別在邊上,四邊形是互補(bǔ)四邊形,若,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在中,為的中點(diǎn),是邊上一動(dòng)點(diǎn),連接.若設(shè) (當(dāng)點(diǎn)與點(diǎn)重合時(shí),的值為),.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究.
下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整.
通過(guò)取點(diǎn)、畫(huà)圖、計(jì)算,得到了與的幾組值,如下表:
說(shuō)明:補(bǔ)全表格時(shí),相關(guān)數(shù)值保留一位小數(shù).
(參考數(shù)據(jù):) .
如圖2,描出剩余的點(diǎn),并用光滑的曲線畫(huà)出該函數(shù)的圖象.
觀察圖象,下列結(jié)論正確的有 _ .
①函數(shù)有最小值,沒(méi)有最大值
②函數(shù)有最小值,也有最大值
③當(dāng)時(shí),隨著的增大而增大
④當(dāng)時(shí),隨著的增大而減小
查看答案和解析>>
科目:
來(lái)源: 題型:【題目】如圖,在直角坐標(biāo)系中,長(zhǎng)方形的三個(gè)頂點(diǎn)的坐標(biāo)為,,,且軸,點(diǎn)是長(zhǎng)方形內(nèi)一點(diǎn)(不含邊界).
(1)求,的取值范圍.
(2)若將點(diǎn)向左移動(dòng)8個(gè)單位,再向上移動(dòng)2個(gè)單位到點(diǎn),若點(diǎn)恰好與點(diǎn)關(guān)于軸對(duì)稱,求,的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知反比例函數(shù)y=﹣的圖象與直線y=kx(k<0)相交于點(diǎn)A、B,以AB為底作等腰三角形,使∠ACB=120°,且點(diǎn)C的位置隨著k的不同取值而發(fā)生變化,但點(diǎn)C始終在某一函數(shù)圖象上,則這個(gè)圖象所對(duì)應(yīng)的函數(shù)解析式為__.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com