【題目】如圖,在等腰Rt△ABC中,角ACB=90°,P是線段BC上一動點(與點B,C不重合)連接AP,延長BC至點Q,使 CQ=CP,過點Q作QH⊥AP于點H,交AB于點M.
(1)∠APC=α,求∠AMQ的大。ㄓ煤恋氖阶颖硎荆;
(2)在(1)的條件下,過點M作ME⊥QB于點E,試證明 PC 與 ME 之間的數量關系,并證明.
【答案】(1)∠AMQ=45°+α;(2)PC=ME;
【解析】
(1)由等腰直角三角形的性質得出∠BAC=∠B=45°,∠PAB=45°-α,由直角三角形的性質即可得出結論;
(2)由AAS證明△APC≌△QME,得出PC=ME,
(1)∠AMQ=45°+α;理由如下:
∵∠PAC=α,△ACB是等腰直角三角形,
∴∠BAC=∠B=45°,∠PAB=45°-α,
∵QH⊥AP,
∴∠AHM=90°,
∴∠AMQ=180°-∠AHM-∠PAB=45°+α;
(2)結論:PC=ME.
理由:連接AQ,作ME⊥QB,如圖所示:
∵AC⊥QP,CQ=CP,
∴∠QAC=∠PAC=α,
∴∠QAM=45°+α=∠AMQ,
∴AP=AQ=QM,
在△APC和△QME中,
,
∴△APC≌△QME(AAS),
∴PC=ME,
科目:初中數學 來源: 題型:
【題目】為了了解某地九年級學生參加消防知識競賽成績(均為整數),從中抽取了1%的同學的競賽成績,整理后繪制了如下的頻數直方圖,請結合圖形解答下列問題:
(1)這個問題中的總體是________________;
(2)競賽成績在84.5~89.5分這一小組的頻率是_____________;
(3)若競賽成績在90分以上(含90分)的同學可以獲得獎勵,則估計該地獲得獎勵的九年級學生約有_____人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠BAD=α,∠BCD=180°﹣α,BD平分∠ABC.
(1)如圖,若α=90°,根據教材中一個重要性質直接可得 DA=CD,這個性質是__________.
(2)問題解決:如圖,求證AD=CD;
(3)問題拓展:如圖,在等腰△ABC中,∠BAC=100°,BD平分∠ABC,求證:BD+AD=BC.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖:直線l:y=﹣x,點A1的坐標為(﹣1,0),過點A1作x軸的垂線交直線l于點B1 , 以原點O為圓心,OB1長為半徑畫弧交x軸負半軸于點A2 , 再過點A2作x軸的垂線交直線l于點B2 , 以原點O為圓心,OB2長為半徑畫弧交x軸負半軸于點A3…按此作法進行去,點A2016的坐標為( )
A.(﹣22016 , 0)
B.(﹣22017 , 0)
C.(﹣21008 , 0)
D.(﹣21007 , 0)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AC為⊙O的直徑,AB=BD,BD交AC于F,BE∥AD交AC的延長線于E點
(1)求證:BE為⊙O的切線;
(2)若AF=4CF,求tan∠E.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形AOCB的邊長為4,反比例函數y= (k≠0,且k為常數)的圖象過點E,且S△AOE=3S△OBE .
(1)求k的值;
(2)反比例函數圖象與線段BC交于點D,直線y= x+b過點D與線段AB交于點F,延長OF交反比例函數y= (x<0)的圖象于點N,求N點坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,我們把橫 、縱坐標都是整數的點叫做整點.已知點
A(0,4),點B是軸正半軸上的整點,記△AOB內部(不包括邊界)的整點個數為m.當m=3時,點B的橫坐標的所有可能值是 ▲ ;當點B的橫坐標為4n(n為正整數)時,m= (用含n的代數式表示.)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在數軸上,點A、B分別表示點﹣5、3,M、N兩點分別從A、B同時出發(fā)以3cm/s、1cm/s的速度沿數軸向右運動.
(1)求線段AB的長;
(2)求當點M、N重合時,它們運動的時間;
(3)M、N在運動的過程中是否存在某一時刻,使BM=2BN.若存在請求出它們運動的時間,若不存在請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com