【題目】如圖,正方形AOCB的邊長為4,反比例函數(shù)y= (k≠0,且k為常數(shù))的圖象過點E,且SAOE=3SOBE
(1)求k的值;
(2)反比例函數(shù)圖象與線段BC交于點D,直線y= x+b過點D與線段AB交于點F,延長OF交反比例函數(shù)y= (x<0)的圖象于點N,求N點坐標.

【答案】
(1)解:∵SAOE=3SOBE,

∴AE=3BE,

∴AE=3,

∴E(﹣3,4)

反比例函數(shù)y= (k≠0,且k為常數(shù))的圖象過點E,

∴4= ,即k=﹣12


(2)解:∵正方形AOCB的邊長為4,

∴點D的橫坐標為﹣4,點F的縱坐標為4.

∵點D在反比例函數(shù)的圖象上,

∴點D的縱坐標為3,即D(﹣4,3).

∵點D在直線y= x+b上,

∴3= ×(﹣4)+b,解得b=5.

∴直線DF為y= x+5,

將y=4代入y= x+5,得4= x+5,解得x=﹣2.

∴點F的坐標為(﹣2,4),

設(shè)直線OF的解析式為y=mx,

代入F的坐標得,4=﹣2m,

解得m=﹣2,

∴直線OF的解析式為y=﹣2x,

,得

∴N(﹣ ,2


【解析】(1)根據(jù)題意求得E的坐標,把點E(﹣3,4)代入利用待定系數(shù)法即可求出k的值;(2)由正方形AOCB的邊長為4,故可知點D的橫坐標為﹣4,點F的縱坐標為4.由于點D在反比例函數(shù)的圖象上,所以點D的縱坐標為3,即D(﹣4,3),由點D在直線y= x+b上可得出b的值,進而得出該直線的解析式,再把y=4代入直線的解析式即可求出點F的坐標,然后根據(jù)待定系數(shù)法求得直線OF的解析式,然后聯(lián)立方程解方程組即可求得.
【考點精析】掌握正方形的性質(zhì)是解答本題的根本,需要知道正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】只給定三角形的兩個元素,畫出的三角形的形狀和大小是不確定的,在下列給定的兩個條件上增加一個“AB=5cm”的條件后,所畫出的三角形的形狀和大小仍不能完全確定的是( 。

A. B. ,

C. , D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】3分)如圖,AD△ABC的角平分線,DE⊥AC,垂足為EBF∥ACED的延長線于點F,若BC恰好平分∠ABFAE=2BF.給出下列四個結(jié)論:①DE=DF②DB=DC;③AD⊥BC;④AC=3BF,其中正確的結(jié)論共有( )

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰Rt△ABC中,角ACB=90°,P是線段BC上一動點(與點BC不重合)連接AP,延長BC至點Q,使 CQCP,過點QQHAP于點H,交AB于點M

(1)∠APC=α,求∠AMQ的大。ㄓ煤恋氖阶颖硎荆;

(2)在(1)的條件下,過點MMEQB于點E,試證明 PC ME 之間的數(shù)量關(guān)系,并證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知一張長方形紙片,,).將這張紙片沿著過點的折痕翻折,使點落在邊上的點,折痕交 于點,將折疊后的紙片再次沿著另一條過點的折痕翻折,點恰好與點重合,此時折痕交于點

1)在圖中確定點、點和點的位置;

2)聯(lián)結(jié) 等于多少°;

3)用含有的代數(shù)式表示線段的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠BAC=90°,∠B=60°,△AB′C′可以由△ABC繞點A順時針旋轉(zhuǎn)90°得到(點B′與點B是對應(yīng)點,點C′與點C是對應(yīng)點),連接CC′,則∠CC′B′的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】先化簡,再求值.

(1)(2x2y4xy2)(xy2x2y),其中x=-1y2;

(2)2x2[3(x2xy)2y2]2(x2xy2y2),其中x,y滿足|x|(y1)20.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為解決中小學(xué)大班額問題,東營市各縣區(qū)今年將改擴建部分中小學(xué),某縣計劃對A、B兩類學(xué)校進行改擴建,根據(jù)預(yù)算,改擴建2所A類學(xué)校和3所B類學(xué)校共需資金7800萬元,改擴建3所A類學(xué)校和1所B類學(xué)校共需資金5400萬元.

(1)改擴建1所A類學(xué)校和1所B類學(xué)校所需資金分別是多少萬元?

(2)該縣計劃改擴建A、B兩類學(xué)校共10所,改擴建資金由國家財政和地方財政共同承擔.若國家財政撥付資金不超過11800萬元;地方財政投入資金不少于4000萬元,其中地方財政投入到A、B兩類學(xué)校的改擴建資金分別為每所300萬元和500萬元.請問共有哪幾種改擴建方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為半圓O的直徑,AD、BC分別切⊙O于A,B兩點,CD切⊙O于點E,連接OD、OC,下列結(jié)論:①∠DOC=90°,②AD+BC=CD,③SAOD:SBOC=AD2:AO2 , ④OD:OC=DE:OE,⑤OD2=DECD,正確的有(
A.2個
B.3個
C.4個
D.5個

查看答案和解析>>

同步練習(xí)冊答案