【題目】如圖,在銳角△ABC中,AD平分∠BAC交BC于點(diǎn)D,點(diǎn)M,N分別是AD和AB上的動(dòng)點(diǎn),當(dāng)SABC=6,AC=4時(shí),BM+MN的最小值等于_______。
【答案】3.
【解析】
作N關(guān)于AD的對稱點(diǎn)為R,作AC邊上的高BE(E在AC上),求出BM+MN=BR,根據(jù)垂線段最短得出BM+MN≥BE,求出BE即可得出BM+MN的最小值.
解:作N關(guān)于AD的對稱點(diǎn)為R,作AC邊上的高BE(E在AC上),
∵AD平分∠CAB,△ABC為銳角三角形,
∴R必在AC上,
∵N關(guān)于AD的對稱點(diǎn)為R,
∴MR=MN,
∴BM+MN=BM+MR,
即BM+MN=BR≥BE(垂線段最短),
∵SABC=6,AC=4,
∴ ×4×BE=6,
∴BE=3,
即BM+MN的最小值為3.
故答案為:3.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等邊三角形,點(diǎn)D為BC邊上一動(dòng)點(diǎn)(不與點(diǎn)B,C重合),∠DAE=60°,過點(diǎn)B作BE∥AC交AE于點(diǎn)E.
(1)求證:△ADE是等邊三角形;
(2)當(dāng)點(diǎn)D在何處時(shí),AE⊥BE?指出點(diǎn)D的位置,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=12,AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.點(diǎn)E是CD的中點(diǎn),則AE的長為( )
A.6
B.
C.5
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為響應(yīng)區(qū)“美麗廣西 清潔鄉(xiāng)村”的號召,某校開展“美麗廣西 清潔校園”的活動(dòng),該校經(jīng)過精心設(shè)計(jì),計(jì)算出需要綠化的面積為498m2 , 綠化150m2后,為了更快的完成該項(xiàng)綠化工作,將每天的工作量提高為原來的1.2倍.結(jié)果一共用20天完成了該項(xiàng)綠化工作.該項(xiàng)綠化工作原計(jì)劃每天完成多少m2?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:長方形ABCD在坐標(biāo)平面內(nèi)的位置如圖所示, A(1,1) C(-3,-4),點(diǎn)P從點(diǎn)A出發(fā),沿著A→B→C→D→A的路徑,以每秒個(gè)單位的速度運(yùn)動(dòng).運(yùn)動(dòng)一周回到A點(diǎn)時(shí)停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)時(shí)間為t秒.
(1)直接寫出點(diǎn)B、點(diǎn)D的坐標(biāo).
(2)當(dāng)t=6秒時(shí),寫出P點(diǎn)的坐標(biāo).
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到與x軸的距離為個(gè)單位時(shí)直接寫出t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)M是AB的中點(diǎn),點(diǎn)P在MB上.分別以AP,PB為邊,作正方形APCD和正方形PBEF,連結(jié)MD和ME.設(shè)AP=a,BP=b,且a+b=10,ab=20.則圖中陰影部分的面積為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,AE是BC邊上的中線,過點(diǎn)C作AE 的垂線CF,垂足為F,過點(diǎn)B作BD⊥BC,交CF的延長線于點(diǎn)D.
(1)求證:AE=CD.
(2)若AC=12 cm,求BD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com