【題目】如圖,在RtABC中,∠C=90°,∠A的平分線交BCD. C點作CGABG,交ADE. D點作DFABF. 下列結(jié)論:①∠CED=CDE;②SAECSAEG=ACAG;③∠ADF=2FDB;④CE=DF.其中正確的結(jié)論有(

A.1B.2C.3D.4

【答案】C

【解析】

由∠C=90°,CGAB,得∠ACE=B,再由外角的性質(zhì),得∠CED=CDE,得CE=CD;根據(jù)角平分線的性質(zhì),得CD=DF,則SAECSAEG=ACAG;得CE=DF,從而得出答案.

∵∠ACE+BCG=90°,∠B+BCG=90°

∴∠ACE=B

∵∠CED=CAE+ACE,∠CDE=B+DA

∴∠CED=CDE,故①正確;

CE=CD

AE平分∠CAB

CD=DF

CE=DF,故④正確;

EEH垂直于AC由角平線性質(zhì)得EH=EG

可得SAECSAEG=ACEHAGEG=ACAG;故②正確;

無法證明∠ADF=2FDB,故④錯誤.

∴正確的結(jié)論有3個.

故選:C

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將矩形紙片ABCD沿對角線BD折疊,使點A落在平面上的F點處,DFBC于點E

1)求證:DCE≌△BFE;

2)若CD=2,ADB=30°,求BE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖像與反比例函數(shù)y=的圖像交于點,An3)和點B1,-6),與y軸交于點C

1)求一次函數(shù)和反比例函數(shù)表達式;

2)請直接寫出關于x的不等式kx+b>的解集;

3)把點C繞著點O逆時針旋轉(zhuǎn)90°,得到點,連接,,求AB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀下列材料并解決問題

進位制是一種記數(shù)方式,可以用有限的數(shù)字符號代表所有的數(shù)值,使用數(shù)字符號的數(shù)目稱為基數(shù),基數(shù)為n,即可稱n進制。現(xiàn)在最常用的是十進制,通常使用10個阿拉伯數(shù)字0~9進行記數(shù),特點是逢十進一。

對于任意一個用進制表示的數(shù),通常使用n個阿拉伯數(shù)字進行記數(shù),特點是逢n進一。我們可以通過以下方式把它轉(zhuǎn)化為十進制:

例如:五進制數(shù),記作: ,

七進制數(shù),記作:

1)請將以下兩個數(shù)轉(zhuǎn)化為十進制: ____________ ____________ ;

2)若一個正數(shù)可以用七進制表示為,也可以用五進制表示為,請求出這個數(shù)并用十進制表示。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在四張背面完全相同的紙牌A、B、C、D,其中正面分別畫有四個不同的幾何圖形(如圖),小華將這4張紙牌背面朝上洗勻后摸出一張,放回洗勻后再摸一張.

(1)用樹狀圖(或列表法)表示兩次摸牌所有可能出現(xiàn)的結(jié)果(紙牌可用A、B、C、D表示);

(2)求摸出兩張紙牌牌面上所畫幾何圖形,既是軸對稱圖形又是中心對稱圖形的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,一動點從原點O出發(fā),按向上、向右、向下、向右的方向不斷地移動,每次移動1個單位長度,得到點A1(0,1),A2(1,1),A3(1,0),A4(2,0),…,那么點A2 019的坐標為________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】雙峰縣教育局要求各學校加強對學生的安全教育,全縣各中小學校引起高度重視,小剛就本班同學對安全知識的了解程度進行了一次調(diào)查統(tǒng)計.他將統(tǒng)計結(jié)果分為三類,A:熟悉;B:了解較多;C:一般了解。圖和圖是他采集數(shù)據(jù)后,繪制的兩幅不完整的統(tǒng)計圖,請你根據(jù)圖中提供的信息解答以下問題:

(1)求小剛所在的班級共有多少名學生;

(2)在條形圖中,將表示“一般了解”的部分補充完整‘’

(3)在扇形統(tǒng)計圖中,計算“了解較多”部分所對應的扇形圓心角的度數(shù);

(4)如果小剛所在年級共1000名同學,請你估算全年級對安全知識“了解較多”的學生人數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,點C在∠AOB的一邊OA上,過點C的直線DEOB,CF平分∠ACDCGCF于點C

(1)若∠O40°,求∠ECF的度數(shù);

(2)求證:CG平分∠OCD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在三角形ABC中,點DBC上,DEABE,點FAB上,在CF的延長線上取一點G,連接AG.

(1)如圖1,若∠GAB=B,GAC+EDB=180°,求證:ABAC.

(2)如圖2.(1)的條件下,GAC的平分線交CG于點M,ACB的平分線交AB于點N,當∠AMCANC=35°時,求∠AGC的度數(shù)。

查看答案和解析>>

同步練習冊答案