【題目】高中招生指標(biāo)到校是我市中考招生制度改革的一項(xiàng)重要措施.某初級(jí)中學(xué)對(duì)該校近四年指標(biāo)到校保送生人數(shù)進(jìn)行了統(tǒng)計(jì),制成了如下兩幅不完整的統(tǒng)計(jì)圖:

(1)該校近四年保送生人數(shù)的極差是 .請(qǐng)將折線統(tǒng)計(jì)圖補(bǔ)充完整;

(2)該校2009年指標(biāo)到校保送生中只有1位女同學(xué),學(xué)校打算從中隨機(jī)選出2位同學(xué)了解他們進(jìn)人高中階段的學(xué)習(xí)情況.請(qǐng)用列表法或畫樹狀圖的方法,求出所選兩位同學(xué)恰好是1位男同學(xué)和1位女同學(xué)的概率.

【答案】解:(1)因?yàn)樵撔=哪瓯K蜕藬?shù)的最大值是8,最小值是3,

所以該校近四年保送生人數(shù)的極差是:8﹣3=5,

折線統(tǒng)計(jì)圖如下:

(2)列表如下:

由圖表可知,共有12種情況,選兩位同學(xué)恰好是1位男同學(xué)和1位女同學(xué)的有6種情況,

所以選兩位同學(xué)恰好是1位男同學(xué)和1位女同學(xué)的概率是=

【解析】(1)用該校近四年保送生人數(shù)的最大值減去最小值,即可求出極差,根據(jù)扇形統(tǒng)計(jì)圖和折線統(tǒng)計(jì)圖分別求出2009年和2012年的保送生人數(shù),即可將折線統(tǒng)計(jì)圖補(bǔ)充完整;

(2)根據(jù)題意列表,求出所有情況,再求出選兩位同學(xué)恰好是1位男同學(xué)和1位女同學(xué)的情況,再根據(jù)概率公式計(jì)算即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】根據(jù)以下10個(gè)乘積,回答問題:

 11×29;12×28;13×27;14×2615×25;16×24;17×23;18×22;19×2120×20

1)將以上各乘積分別寫成“a2b2(兩數(shù)平方)的形式,將以上10個(gè)乘積按照從小到大的順序排列起來;

2)用含有a,b的式子表示(1)中的一個(gè)一般性的結(jié)論(不要求證明);

3)根據(jù)(2)中的一般性的結(jié)論回答下面問題:某種產(chǎn)品的原料提價(jià),因而廠家決定對(duì)產(chǎn)品進(jìn)行提價(jià),現(xiàn)有兩種方案方案:第一次提價(jià)p%,第二次提價(jià)q%;方案2:第一、二次提價(jià)均為%,其中pq,比較哪種方案提價(jià)最多?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,修公路遇到一座山,于是要修一條隧道.為了加快施工進(jìn)度,想在小山的另一側(cè)同時(shí)施工.為了使山的另一側(cè)的開挖點(diǎn)C在AB的延長線上,設(shè)想過C點(diǎn)作直線AB的垂線L,過點(diǎn)B作一直線(在山的旁邊經(jīng)過),與L相交于D點(diǎn),經(jīng)測(cè)量ABD=135°,BD=800米,求直線L上距離D點(diǎn)多遠(yuǎn)的C處開挖?(≈1.414,精確到1米)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=6cm,ABC=30°,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),在BA邊上以每秒2cm的速度向點(diǎn)A勻速運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),在CB邊上以每秒cm的速度向點(diǎn)B勻速運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒(0≤t≤6),連接PQ,以PQ為直徑作⊙O.

(1)當(dāng)t=1時(shí),求BPQ的面積;

(2)設(shè)⊙O的面積為y,求yt的函數(shù)解析式;

(3)若⊙ORtABC的一條邊相切,求t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合與實(shí)踐:

如圖1,中,,于點(diǎn);如圖2,在圖1的基礎(chǔ)上,動(dòng)點(diǎn)從點(diǎn)出發(fā)以每秒的速度沿線段向點(diǎn)運(yùn)動(dòng),同時(shí)動(dòng)點(diǎn)從點(diǎn)出發(fā)以相同速度沿線段向點(diǎn)運(yùn)動(dòng),當(dāng)其中一點(diǎn)到達(dá)終點(diǎn)時(shí)另外一點(diǎn)也隨之停止運(yùn)動(dòng),設(shè)點(diǎn)運(yùn)動(dòng)的時(shí)間為秒.

1)求的長;

2)當(dāng)的其中一邊與平行時(shí)(不重合),求的值;

3)點(diǎn)在線段上運(yùn)動(dòng)的過程中,是否存在以為腰的是等腰三角形?若存在,求出的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,AB=ACAB為直徑作半圓O,BC于點(diǎn)D,連接AD,過點(diǎn)DDEAC,垂足為點(diǎn)E,AB的延長線于點(diǎn)F

1)求證EF是⊙O的切線

2)如果⊙O的半徑為5,sinADE=,BF的長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】宜興在“創(chuàng)建文明城市”行動(dòng)中,某社區(qū)計(jì)劃對(duì)面積為2160m2的區(qū)域進(jìn)行綠化.經(jīng)投標(biāo),由甲、乙兩個(gè)工程隊(duì)來完成,已知甲隊(duì)每天能完成綠化的面積是乙隊(duì)每天能完成綠化面積的2倍,并且在獨(dú)立完成面積為480m2區(qū)域的綠化時(shí),甲隊(duì)比乙隊(duì)少用4天.

(1)求甲、乙兩工程隊(duì)每天能完成綠化的面積;

(2)設(shè)甲工程隊(duì)施工x天,乙工程隊(duì)施工y天,剛好完成綠化任務(wù),求y與x的函數(shù)表達(dá)式;

(3)若甲隊(duì)每天綠化費(fèi)用是0.8萬元,乙隊(duì)每天綠化費(fèi)用為0.35萬元,且甲、乙兩隊(duì)施工的總天數(shù)不超過26天,則如何安排甲乙兩隊(duì)施工的天數(shù),使施工總費(fèi)用最低?并求出最低費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一個(gè)長為2m,寬為2m的長方形紙片,用剪刀沿圖中虛線剪成四塊形狀大小完全一樣的小長方形紙片,然后按圖2的方式拼成1個(gè)空心正方形.(陰影部分為空心)

1)請(qǐng)你用兩種方法求圖2中陰影部分的面積,直接用含m,n的代數(shù)式表示;方法① ;方法②

2)觀察圖2,請(qǐng)你寫出,三個(gè)代數(shù)式之間存在的恒等關(guān)系式;

3)已知, ,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a>0)的圖象的對(duì)稱軸為直線x=1,且(x1,y1),(x2,y2)為其圖象上的兩點(diǎn),(

A. x1>x2>1,則(y1-y2)+2a(x1-x2)<0

B. 1>x1>x2,則(y1-y2)+2a(x1-x2)<0

C. x1>x2>1,則(y1-y2)+a(x1-x2)>0

D. 1>x1>x2,則(y1-y2)+a(x1-x2)>0

查看答案和解析>>

同步練習(xí)冊(cè)答案