【題目】
(已有經(jīng)驗)
我們已經(jīng)研究過作一個圓經(jīng)過兩個已知點,也研究過作一個圓與已知角的兩條邊都相切,尺規(guī)作圖如圖所示:
(遷移經(jīng)驗)
(1)如圖①,已知點M和直線l,用兩種不同的方法完成尺規(guī)作圖:求作⊙O,使⊙O過M點,且與直線l相切.(每種方法作出一個圓即可,保留作圖痕跡,不寫作法)
(問題解決)
如圖②,在Rt△ABC中,∠C=90°,AC=8,BC=6.
(2)已知⊙O經(jīng)過點C,且與直線AB相切.若圓心O在△ABC的內(nèi)部,則⊙O半徑r的取值范圍為 .
(3)點D是邊AB上一點,BD=m,請直接寫出邊AC上使得∠BED為直角時點E的個數(shù)及相應(yīng)的m的取值范圍.
【答案】(1)見解析;(2);(3)見解析.
【解析】
(1)過直線外一點作已知直線的垂線,作線段的垂直平分線確定圓心,從而畫圓;
(2)分別作出符合題意的臨界點圖形,確定半徑的取值范圍;
(3)根據(jù)圓周角定理,點E在以BC為直徑的圓上,從而確定出符合條件的圓的半徑的取值范圍.
(1)如圖,
(2)如圖:
此時圓O的半徑最小,∵圓O與AB相切,
∴CD⊥AB,根據(jù)直角三角形的面積公式可得:
根據(jù)勾股定理可得:
∴10CD=8×6
CD=4.8,即此時圓的半徑r=2.4
如圖,當(dāng)圓心O在AC邊上時,根據(jù)題意設(shè)OC=OD=x,則AO=8-x
∵∠ODA=∠BCA=90°,且∠A=∠A
∴△AOD∽△ABC
∴ , 解得x=3
∴
(3)如圖:
根據(jù)圓周角定理∠BED為直角時,則以BD為直徑的圓與AC交于點E,當(dāng)OE⊥AC時,此時有一個點E符合條件,由題意可知:OE= ,AO=
∵OE∥BC
∴ ,
解得:m=7.5
當(dāng)BD=AB時,點E與點C重合,此時m=10
∴時,有1個點E符合題意
時,有0個點E符合題意
時,有2個點E符合題意.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們縣是紫菜生產(chǎn)大縣,某景點商戶向游客推銷一種加工好的優(yōu)質(zhì)紫菜,已知每千克成本為20元.市場調(diào)查發(fā)現(xiàn),在一段時間內(nèi),該產(chǎn)品銷售量(千克)與銷售單價(元/千克)的變化而變化有如下關(guān)系式:.設(shè)這種紫菜在這段時間內(nèi)的銷售利潤為(元).
(1)求與的關(guān)系式;
(2)當(dāng)銷售價定為多少元時,每天的銷售利潤最大?最大利潤是多少?
(3)如果物價部門規(guī)定該景區(qū)這種紫菜的銷售單價不得高于28元/千克,該商戶每天能否獲得比150元更大的利潤?如果能請求出最大利潤,如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店經(jīng)銷一種健身球,已知這種健身球的成本價為每個20元,市場調(diào)查發(fā)現(xiàn),該種健身球每天的銷售量y(個)與銷售單價x(元)有如下關(guān)系:y=﹣20x+80(20≤x≤40),設(shè)這種健身球每天的銷售利潤為w元.
(1)求w與x之間的函數(shù)關(guān)系式;
(2)該種健身球銷售單價定為多少元時,每天的銷售利潤最大?最大利潤是多少元?
(3)如果物價部門規(guī)定這種健身球的銷售單價不高于28元,該商店銷售這種健身球每天要獲得150元的銷售利潤,銷售單價應(yīng)定為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AD、BC的延長線相交于點E,AB、DC的延長線相交于點F.若∠E+∠F=80°,則∠A=____°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一個半徑為2的半圓形紙片,按如圖方式折疊,使對折后半圓弧的中點M與圓心O重合,則圖中陰影部分的面積是
A.B.-2C.-D.2-
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD內(nèi)接于⊙O,AC平分∠BAD,延長DC交AB的延長線于點E .
(1)若∠ADC=86°,求∠CBE的度數(shù);
(2)若AC=EC,求證:AD=BE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=a(x﹣1)(x﹣3)(a<0)的頂點為A,交y軸交于點C,過C作CB∥x軸交拋物線于點B,過點B作直線l⊥x軸,連結(jié)OA并延長,交l于點D,連結(jié)OB.
(1)當(dāng)a=﹣1時,求線段OB的長.
(2)是否存在特定的a值,使得△OBD為等腰三角形?若存在,請寫出求a值的計算過程;若不存在,請說明理由.
(3)設(shè)△OBD的外心M的坐標(biāo)為(m,n),求m與n的數(shù)量關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某產(chǎn)品每件成本為20元,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種產(chǎn)品在未來20天內(nèi)的日銷售量(單位:件)是關(guān)于時間(單位:天)的一次函數(shù),調(diào)研所獲的部分?jǐn)?shù)據(jù)如下表:
時間/天 | 1 | 3 | 10 | 20 |
日銷售量/件 | 98 | 94 | 80 | 60 |
這20天中,該產(chǎn)品每天的價格(單位:元/件)與時間的函數(shù)關(guān)系式為:(為整數(shù)),根據(jù)以上提供的條件解決下列問題:
(1)直接寫出關(guān)于的函數(shù)關(guān)系式;
(2)這20天中哪一天的日銷售利潤最大,最大的銷售利潤是多少?
(3)在實際銷售的20天中,每銷售一件商品就捐贈元()給希望工程,通過銷售記錄發(fā)現(xiàn),這20天中,每天扣除捐贈后的日銷利潤隨時間的增大而增大,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某廠家生產(chǎn)并銷售某種產(chǎn)品,假設(shè)銷售量與產(chǎn)量相等,如圖中的折線ABD,線段CD分別表示該產(chǎn)品每千克生產(chǎn)成本y1(單位:元),銷售價y2(單位:元)與產(chǎn)量x(單位:kg)之間的函數(shù)關(guān)系.
(1)請解釋圖中點D的實際意義.
(2)求線段CD所表示的y2與x之間的函數(shù)表達(dá)式.
(3)當(dāng)該產(chǎn)品產(chǎn)量為多少時,獲得的利潤最大?最大利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com