【題目】如圖,等腰Rt△ABC中,∠ABC=90°,點A,B分別在坐標軸上.
(1)如圖①,若點C的橫坐標為5,求點B的坐標.
(2)如圖②,若BC交x軸于M,過C作CD⊥BC交y軸于D . 求證:BC-CD=MC.
(3)如圖③,若點A的坐標為(-4,0),點B是y軸正半軸上的一個動點,分別以OB,AB為直角邊在第一、第二象限作等腰Rt△OBF(∠OBF=90°)、等腰Rt△ABE(∠ABE=90°),連接EF交y軸于點P,當點B在y軸上運動時,PB的長度是否發(fā)生改變?若不變,求出PB的值;若變化,求PB的取值范圍.
【答案】(1)B點坐標(0,5);(2)證明見解析;(3)PB的長度不變,PB=2.
【解析】
(1)作CD⊥BO,易證△ABO≌△BCD,根據全等三角形對應邊相等的性質即可解題;
(2)由(1)知∠CBD=∠BAM,根據AB=BC,∠ABM=∠BCD=90°,可證△ABM≌△BCD(ASA),可得CD=MB,由于BC-MB=MC,繼而求得BC-CD=MC;
(3)作EG⊥y軸,易證△BAO≌△EBG和△EGP≌△FBP,可得BG=AO和PB=PG,即可求得PB=AO,即可解題.
(1)如圖1,作CD⊥BO于D,
∵∠CBD+∠ABO=90°,∠ABO+∠BAO=90°,
∴∠CBD=∠BAO,
又∵∠AOB=∠BDC , AB=BC
∴△ABO≌△BCD(AAS)
∴CD=BO=5,
∴B點坐標(0,5)
(2)由(1)知:∠CBD=∠BAM
又AB=BC,∠ABM=∠BCD=90°
∴△ABM≌△BCD(ASA)
∴CD=MB
∵BC-MB=MC
∴BC-CD=MC
(3)PB的長度不變,如圖3,作EG⊥y軸于G,
∵∠BAO+∠OBA=90°,∠OBA+∠EBG=90°,
∴∠BAO=∠EBG,
又∠AOB=∠BGE=90°,AB=BE
∴△BAO≌△EBG(AAS),
∴BG=AO,EG=OB,
∵OB=BF,
∴BF=EG,
在△EGP和△FBP中,
,
∴△EGP≌△FBP(AAS),
∴PB=PG,
∴PB=BG=AO=2.
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,每個小正方形邊長都是1.
(1)按要求作圖:
①以坐標原點O為旋轉中心,將△ABC逆時針旋轉90°得到△A1B1C1;
②作出△A1B1C1關于原點成中心對稱的中心對稱圖形△A2B2C2.
(2)△A2B2C2中頂點B2坐標為 .
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知點O是等腰直角三角形ABC斜邊上的中點,AB=BC,E是AC上一點,連結EB.
(1) 如圖1,若點E在線段AC上,過點A作AM⊥BE,垂足為M,交BO于點F.求證:OE=OF;
(2)如圖2,若點E在AC的延長線上,AM⊥BE于點M,交OB的延長線于點F,其它條件不變,則結論“OE=OF”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在等邊△ABC中,點D,E分別在邊BC,AC上,DE∥AB,過點E作EF⊥DE,交BC的延長線于點F.
(1)求∠F的度數;
(2)若CD=2,求DF、EF的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,等腰 Rt△ABC 中,∠BAC=90°,AD⊥BC 于D,∠ABC 的平分線分別交 AC,AD 于E,F,點M 為 EF 的中點,AM 的延長線交 BC 于N,連接 DM,NF,EN.下列結論:①△AFE為等腰三角形;②△BDF≌△ADN;③NF所在的直線垂直平分AB;④DM平分∠BMN;⑤AE=EN=NC;⑥.其中正確結論的個數是( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,平面直角坐標系中,△ABC三個頂點的坐標分別為A(1,0),B(2,-3),C(4,-2).
(1)在圖中作出△ABC關于x軸對稱的圖形△A1B1C1.
(2)作出△A1B1C1向左平移4個單位長度后得到的△A2B2C2,并直接寫出點C2的坐標_____.
(3)△A2B2C2的面積是____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知拋物線經過點A(-1,0),B(4,0)C(0,2)三點,點D與點C關于x軸對稱,點P是x軸上的一個動點,設點P的坐標為(m,0),過點P做x軸的垂線交拋物線于點Q,交直線BD于點M.
(1)求該拋物線所表示的二次函數的表達式;
(2)已知點F(0,),當點P在x軸上運動時,試求m為何值時,四邊形DMQF是平行四邊形?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】《北京中小學語文學科教學21條改進意見》中的第三條指出:“在教學中重視對國學經典文化的學習,重視歷史文化的熏陶,加強與革命傳統教育的結合,使學生了解中華文化的悠久歷史,增強民族文化自信和價值觀自信,使語文教學成為涵養(yǎng)社會主義核心價值觀的重要源泉之一”.為此,昌平區(qū)掀起了以“閱讀經典作品,提升思維品質”為主題的讀書活動熱潮,在一個月的活動中隨機調查了某校初二年級學生的周人均閱讀時間的情況,整理并繪制了如下的統計圖表:
某校初二年級學生周人均閱讀時間頻數分布表
周人均閱讀時間x (小時) | 頻數 | 頻率 |
0≤x<2 | 10 | 0.025 |
2≤x<4 | 60 | 0.150 |
4≤x<6 | a | 0.200 |
6≤x<8 | 110 | 0.275 |
8≤x<10 | 100 | 0.250 |
10≤x<12 | 40 | b |
合計 | 400 | 1.000 |
請根據以上信息,解答下列問題:
(1)在頻數分布表中a=______,b=______;
(2)補全頻數分布直方圖;
(3)若該校有1600名學生,根據調查數據請你估計,該校學生周人均閱讀時間不少于6小時的學生大約有______人.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點A在雙曲線y=的第一象限的那一支上,AB垂直于x軸與點B,
點C在x軸正半軸上,且OC=2AB,點E在線段AC上,且AE=3EC,點D為OB的中點,若△ADE
的面積為3,則k的值為 ▲ .
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com