【題目】如圖,在平面直角坐標(biāo)系中,直線(xiàn)y=﹣5x+5與x軸、y軸分別交于A,C兩點(diǎn),拋物線(xiàn)y=x2+bx+c經(jīng)過(guò)A,C兩點(diǎn),與x軸交于另一點(diǎn)B.
(1)求拋物線(xiàn)解析式及B點(diǎn)坐標(biāo);
(2)x2+bx+c≤﹣5x+5的解集是 ;
(3)若點(diǎn)M為拋物線(xiàn)上一動(dòng)點(diǎn),連接MA、MB,當(dāng)點(diǎn)M運(yùn)動(dòng)到某一位置時(shí),△ABM面積為△ABC的面積的倍,求此時(shí)點(diǎn)M的坐標(biāo).
【答案】(1)(5,0);(2)0≤x≤1;(3)(3,﹣4)或(3+2,4)或(3﹣2,4)
【解析】
(1)根據(jù)已知條件將A點(diǎn)、C點(diǎn)代入拋物線(xiàn)即可求解;
(2)觀(guān)察直線(xiàn)在拋物線(xiàn)上方的部分,根據(jù)拋物線(xiàn)與直線(xiàn)的交點(diǎn)坐標(biāo)即可求解;
(3)先設(shè)動(dòng)點(diǎn)M的坐標(biāo),再根據(jù)兩個(gè)三角形的面積關(guān)系即可求解.
(1)因?yàn)橹本(xiàn)y=﹣5x+5與x軸、y軸分別交于A,C兩點(diǎn),
所以當(dāng)x=0時(shí),y=5,所以C(0,5)
當(dāng)y=0時(shí),x=1,所以A(1,0)
因?yàn)閽佄锞(xiàn)y=x2+bx+c經(jīng)過(guò)A,C兩點(diǎn),
所以c=5,1+b+5=0,解得b=﹣6,
所以?huà)佄锞(xiàn)解析式為y=x2﹣6x+5.
當(dāng)y=0時(shí),0=x2﹣6x+5.解得x1=1,x2=5.
所以B點(diǎn)坐標(biāo)為(5,0).
答:拋物線(xiàn)解析式為y=x2﹣6x+5,B點(diǎn)坐標(biāo)為(5,0);
(2)觀(guān)察圖象可知:
x2+bx+c≤﹣5x+5的解集是0≤x≤1.
故答案為0≤x≤1.
(3)設(shè)M(m,m2﹣6m+5)
因?yàn)?/span>S△ABM=S△ABC=×4×5=8.
所以×4|m2﹣6m+5|=8
所以|m2﹣6m+5|=±4.
所以m2﹣6m+9=0或m2﹣6m+1=0
解得m1=m2=3或m=3±2.
所以M點(diǎn)的坐標(biāo)為(3,﹣4)或(3+2,4)或(3﹣2,4).
答:此時(shí)點(diǎn)M的坐標(biāo)為(3,﹣4)或(3+2,4)或(3﹣2,4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,將正方形繞點(diǎn)逆時(shí)針旋轉(zhuǎn)后得到正方形,依此方式,繞點(diǎn)連續(xù)旋轉(zhuǎn)2019次得到正方形,如果點(diǎn)的坐標(biāo)為(1,0),那么點(diǎn)的坐標(biāo)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等腰三角形,AB=AC,點(diǎn)D是AB上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC交BC于點(diǎn)E,交CA延長(zhǎng)線(xiàn)于點(diǎn)F.
(1)證明:△ADF是等腰三角形;
(2)若∠B=60°,BD=4,AD=2,求EC的長(zhǎng),
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O經(jīng)過(guò)四邊形ABCD的B、D兩點(diǎn),并與四條邊分別交于點(diǎn)E、F、G、H,且.
(1)如圖①,連接BD,若BD是⊙O的直徑,求證:∠A=∠C;
(2)如圖②,若的度數(shù)為θ,∠A=α,∠C=β,請(qǐng)直接寫(xiě)出θ、α和β之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)經(jīng)營(yíng)某種品牌的計(jì)算器,購(gòu)進(jìn)時(shí)的單價(jià)是20元,根據(jù)市場(chǎng)調(diào)查:在一段時(shí)間內(nèi),銷(xiāo)售單價(jià)是30元時(shí),銷(xiāo)售量是600個(gè),而銷(xiāo)售單價(jià)每上漲1元,就會(huì)少售出10個(gè).
(1)不妨設(shè)該種品牌計(jì)算器的銷(xiāo)售單價(jià)為x元(x>30),請(qǐng)你分別用x的代數(shù)式來(lái)表示銷(xiāo)售量y個(gè)和銷(xiāo)售該品牌計(jì)算器獲得利潤(rùn)w元,并把結(jié)果填寫(xiě)在表格中:
銷(xiāo)售單價(jià)(元) | x(x>30) |
銷(xiāo)售量y(個(gè)) |
|
銷(xiāo)售計(jì)算器獲得利潤(rùn)w(元) |
|
(2)在第(1)問(wèn)的條件下,若計(jì)算器廠(chǎng)規(guī)定該品牌計(jì)算器銷(xiāo)售單價(jià)不低于35元,且商場(chǎng)要完成不少于500個(gè)的銷(xiāo)售任務(wù),求:商場(chǎng)銷(xiāo)售該品牌計(jì)算器獲得最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某中學(xué)課外興趣活動(dòng)小組準(zhǔn)備圍建一個(gè)矩形花草園,其中一邊靠墻,另外三邊周長(zhǎng)為30米的籬笆圍成.已知墻長(zhǎng)為16米(如圖所示),設(shè)這個(gè)花草園垂直于墻的一邊長(zhǎng)為x米.
(1)若花草園的面積為100平方米,求x;
(2)若平行于墻的一邊長(zhǎng)不小于10米,這個(gè)花草園的面積有最大值和最小值嗎?如果有,求出最大值和最小值;如果沒(méi)有,請(qǐng)說(shuō)明理由;
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖①,②,在矩形ABCD中,AB=4,BC=8,P,Q分別是邊BC,CD上的點(diǎn).
(1)如圖①,若AP⊥PQ,BP=2,求CQ的長(zhǎng);
(2)如圖②,若=2,且E,F,G分別為AP,PQ,PC的中點(diǎn),求四邊形EPGF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知m,n是方程x2-6x+5=0的兩個(gè)實(shí)數(shù)根,且m<n,拋物線(xiàn)
y=-x2+bx+c的圖象經(jīng)過(guò)點(diǎn)A(m,0)、B(0,n).
(1)求這個(gè)拋物線(xiàn)的解析式;
(2)設(shè)(1)中拋物線(xiàn)與x軸的另一交點(diǎn)為C,拋物線(xiàn)的頂點(diǎn)為D,試求出點(diǎn)C、D的坐標(biāo)和△BCD的面積;
(3)P是線(xiàn)段OC上的一點(diǎn),過(guò)點(diǎn)P作PH⊥x軸,與拋物線(xiàn)交于H點(diǎn),若直線(xiàn)BC把△PCH分成面積之比為2:3的兩部分,請(qǐng)求出P點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,校園空地上有一面墻,長(zhǎng)度為4米,為了創(chuàng)建“美麗校園”,學(xué)校決定借用這面墻和20米的圍欄圍成一個(gè)矩形花園,設(shè)長(zhǎng)為米,矩形花園的面積為平方米.
(1)如圖1,若所圍成的矩形花園邊的長(zhǎng)不得超出這面墻,求關(guān)于的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
(2)在(1)的條件下,當(dāng)為何值時(shí),矩形花園的面積最大,最大值是多少?
(3)如圖2,若圍成的矩形花園的邊的長(zhǎng)可超出這面墻,求圍成的矩形的最大面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com