【題目】如圖,在ABC中,按以下步驟作圖:分別以B,C為圓心,以大于BC的長(zhǎng)為半徑作弧,弧線兩兩交于MN兩點(diǎn),作直線MN,與邊ACBC分別交于D、E兩點(diǎn),連接BD、AE,若BAC=90°,在下列說法中:

EABC外接圓的圓心;

②圖中有4個(gè)等腰三角形;

ABE是等邊三角形;

④當(dāng)C=30°時(shí),BD垂直且平分AE

其中正確的有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

【答案】B

【解析】

利用線段垂直平分線的性質(zhì),可以證明三角形外接圓,根據(jù)圓內(nèi)的直角,特殊角,可以得到線段長(zhǎng)度的關(guān)系.

解:由作法得MN垂直平分BC,則BE=CE,DB=DC,

∵∠BAC=90°,

BC為△ABC外接圓的直徑,E點(diǎn)為△ABC外接圓的圓心,所以①正確;

AE=BE=CE,DB=DC,

∴△ABEAEC和△DBC都為等腰三角形,所以②錯(cuò)誤;

只有當(dāng)∠ABC=60°時(shí),△ABE是等邊三角形,所以③錯(cuò)誤;

當(dāng)∠C=30°時(shí),ABC=60°,則△ABE是等邊三角形,而∠DBC=C=30°,所以BD為角平分線,所以BDAE,所以④正確.

故選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形ABCO的面積為15,邊OAOC2EBC的中點(diǎn),以OE為直徑的⊙O′軸于D點(diǎn),過點(diǎn)DDF⊥AE于點(diǎn)F

1)求OA、OC的長(zhǎng);

2)求證:DF⊙O′的切線;

3)小明在解答本題時(shí),發(fā)現(xiàn)△AOE是等腰三角形。由此,他斷定:直線BC上一定存在除點(diǎn)E以外的點(diǎn)P,使△AOP也是等腰三角形,且點(diǎn)P一定在⊙O′。你同意他的看法嗎?請(qǐng)充分說明理由。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,E,F(xiàn)分別是AD,BC的中點(diǎn),AF與BE相交于點(diǎn)M,CE與DF相交于點(diǎn)N,QM⊥BE,QN⊥EC相交于點(diǎn)Q,PM⊥AF,PN⊥DF相交于點(diǎn)P,若2BC=3AB,記ABM和CDN的面積和為S,則四邊形MQNP的面積為( 。

A. S B. S C. S D. S

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘.在整個(gè)步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間t

(分)之間的關(guān)系如圖所示,下列結(jié)論:

甲步行的速度為60/分;

乙走完全程用了30分鐘;

乙用16分鐘追上甲;

乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有320

其中正確的結(jié)論有(  )

A. 1 個(gè)B. 2 個(gè)C. 3 個(gè)D. 4 個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在長(zhǎng)方形OABC中,O為平面直角坐標(biāo)系的原點(diǎn),點(diǎn)A坐標(biāo)為(a,0),點(diǎn)C的坐標(biāo)為(0,b),且a、b滿足|b6|0,點(diǎn)B在第一象限內(nèi),點(diǎn)P從原點(diǎn)出發(fā),以每秒2個(gè)單位長(zhǎng)度的速度沿著OCBAO的線路移動(dòng).

1a______________,b_____________,點(diǎn)B的坐標(biāo)為_______________;

2)當(dāng)點(diǎn)P移動(dòng)4秒時(shí),請(qǐng)指出點(diǎn)P的位置,并求出點(diǎn)P的坐標(biāo);

3)在移動(dòng)過程中,當(dāng)點(diǎn)Px軸的距離為5個(gè)單位長(zhǎng)度時(shí),求點(diǎn)P移動(dòng)的時(shí)間.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為積極響應(yīng)市委,市政府提出的實(shí)現(xiàn)偉大中國(guó)夢(mèng),建設(shè)美麗鄂爾多斯的號(hào)召,康巴什區(qū)某校在八,九年級(jí)開展征文活動(dòng),校學(xué)生會(huì)對(duì)這兩個(gè)年級(jí)各班內(nèi)的投稿情況進(jìn)行統(tǒng)計(jì),并制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖.

(1)扇形統(tǒng)計(jì)圖中投稿篇數(shù)為3所對(duì)應(yīng)的扇形的圓心角的度數(shù)是_____;該校八,九年級(jí)各班在這一周內(nèi)投稿的平均篇數(shù)是______;并將該條形統(tǒng)計(jì)圖補(bǔ)充完整.

(2)如果要求該校八、九年級(jí)的投稿班級(jí)個(gè)數(shù)為30個(gè),估計(jì)投稿篇數(shù)為5篇的班級(jí)個(gè)數(shù).

(3)在投稿篇數(shù)為9篇的4個(gè)班級(jí)中,八,九年級(jí)各有兩個(gè)班,校學(xué)生會(huì)準(zhǔn)備從這四個(gè)班級(jí)中選出兩個(gè)班參加全市的表彰會(huì),請(qǐng)你用列表法或畫樹狀圖的方法求出所選兩個(gè)班正好不在同一年級(jí)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,二次函數(shù)圖象的頂點(diǎn)坐標(biāo)為C(1,﹣2),直線y=kx+m的圖象與該二次函數(shù)的圖象交于A、B兩點(diǎn),其中A點(diǎn)坐標(biāo)為(3,0),B點(diǎn)在y軸上.點(diǎn)P為線段AB上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P與點(diǎn)A、B不重合),過點(diǎn)P且垂直于x軸的直線與這個(gè)二次函數(shù)的圖象交于點(diǎn)E.

(1)求這個(gè)二次函數(shù)的解析式;

(2)設(shè)點(diǎn)P的橫坐標(biāo)為x,求線段PE的長(zhǎng)(用含x 的代數(shù)式表示);

(3)點(diǎn)D為直線AB與這個(gè)二次函數(shù)圖象對(duì)稱軸的交點(diǎn),若以點(diǎn)P、E、D為頂點(diǎn)的三角形與△AOB相似,請(qǐng)求出P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩家體育用品商店出售相同的乒乓球和乒乓球拍,乒乓球每盒定價(jià)5元,乒乓球拍每副定價(jià)20元.現(xiàn)兩家商店都搞促銷活動(dòng),甲店每買一副球拍贈(zèng)一盒乒乓球;乙店按九折優(yōu)惠.某班級(jí)需購(gòu)球拍4副,乒乓球x盒(x≥4).

1)若在甲店購(gòu)買付款(元),在乙店購(gòu)買付款(元),分別寫出與x的函數(shù)關(guān)系式;

2)買30盒乒乓球時(shí),在哪家商店購(gòu)買合算?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直線a經(jīng)過正方形ABCD的頂點(diǎn)A,分別過正方形的頂點(diǎn)B、DBFa于點(diǎn)F,DEa于點(diǎn)E,若DE=8,BF=5,則EF的長(zhǎng)為__

查看答案和解析>>

同步練習(xí)冊(cè)答案