【題目】如圖所示,⊙O半徑為2,弦BD=2,A為弧BD的中點(diǎn),E為弦AC的中點(diǎn),且在BD上,求四邊形ABCD的面積.

【答案】.

【解析】

A是弧BD的中點(diǎn),根據(jù)垂徑定理,可知OF⊥BD,且BF=DF=×BD×AF=,而EAC中點(diǎn),會(huì)出現(xiàn)等底同高的三角形,因而有S四邊形=2SABD=2

連結(jié)OA交BD于點(diǎn)F,連接OB.

∵OA在直徑上且點(diǎn)A是BD中點(diǎn),

∴OA⊥BD, BF=DF=

在Rt△BOF中,由勾股定理得OF2=OB2-BF2,

OF=

=

∵點(diǎn)E 是AC中點(diǎn),

∴AE=CE.

又∵△ADE和△CDE同高,

∴S△CDE=S△ADE,

同理S△CBE =S△ABE

∴S△BCD =S△CDE +S△CBE =S△ADE +S△ABE =S△ABD =,

∴S四邊形ABCD=S△ABD +S△BCD =2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)已知:如圖,在△ABC中,BDACD,CEABE,MBC的中點(diǎn).求證:MD=ME.

2)已知:如圖,O是△ABC內(nèi)任意一點(diǎn),且滿足∠1=∠2,ODACD, OEABEMBC的中點(diǎn)。仿照第⑴問的思路,結(jié)合三角形中位線定理,平行四邊形的性質(zhì)與判定,求證:MD=ME.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條東西走向的筆直公路,點(diǎn)A、B表示公路北側(cè)間隔150米的兩棵樹所在的位置,點(diǎn)C表示電視塔所在的位置.小王在公路PQ南側(cè)直線行走,當(dāng)他到達(dá)點(diǎn)P的位置時(shí),觀察樹A恰好擋住電視塔,即點(diǎn)P、A、C在一條直線上,當(dāng)他繼續(xù)走180米到達(dá)點(diǎn)Q的位置時(shí),以同樣方法觀察電視塔,觀察樹B也恰好擋住電視塔.假設(shè)公路兩側(cè)ABPQ,且公路的寬為60米,求電視塔C到公路南側(cè)PQ的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)的位置如圖所示

1)請(qǐng)畫出△ABC關(guān)于y軸對(duì)稱的△ABC;(其中A、B、C分別是A、B、C的對(duì)應(yīng)點(diǎn),不寫畫法)

2)直接寫出ABC三點(diǎn)的坐標(biāo);

3)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程:(1) (2)x2﹣36=0

(3)3x2﹣2x﹣2=0. (4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+2x+m﹣2=0有兩個(gè)實(shí)數(shù)根,m為正整數(shù),且該方程的根都是整數(shù),則符合條件的所有正整數(shù)m的和為( 。

A. 6 B. 5 C. 4 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=﹣(x﹣h)2(h為常數(shù)),當(dāng)自變量x的值滿足2≤x≤5時(shí),與其對(duì)應(yīng)的函數(shù)值y的最大值為﹣1,則h的值為(

A. 36 B. 16 C. 13 D. 46

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,是一種斜挎包,其挎帶由雙層部分、單層部分和調(diào)節(jié)扣構(gòu)成.小垣用后發(fā)現(xiàn),通過調(diào)節(jié)扣加長(zhǎng)或縮短單層部分的長(zhǎng)度,可以使挎帶的長(zhǎng)度(單層部分與雙層部分長(zhǎng)度的和,其中調(diào)節(jié)扣所占的長(zhǎng)度忽略不計(jì))加長(zhǎng)或縮短.設(shè)單層部分的長(zhǎng)度為xcm,雙層部分的長(zhǎng)度為ycm,經(jīng)測(cè)量,得到如下數(shù)據(jù):

(1)根據(jù)表中數(shù)據(jù)的規(guī)律,補(bǔ)全以下表格,并求出y關(guān)于x的函數(shù)表達(dá)式;

單層部分的長(zhǎng)度x(cm)

4

6

8

10

150

雙層部分的長(zhǎng)度y(cm)

73

72

71

______

______

(2)根據(jù)小垣的身高和習(xí)慣,挎帶的長(zhǎng)度為120cm時(shí),背起來正合適,請(qǐng)求出此時(shí)單層部分的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分8分)某商家預(yù)測(cè)一種應(yīng)季襯衫能暢銷市場(chǎng),就用13200元購進(jìn)了一批這種襯衫,面市后果然供不應(yīng)求.商家又用28800元購進(jìn)了第二批這種襯衫,所購數(shù)量是第一批購進(jìn)量的2倍,但單價(jià)貴了10元.

1)該商家購進(jìn)的第一批襯衫是多少件?

2)若兩批襯衫按相同的標(biāo)價(jià)銷售,最后剩下50件按八折優(yōu)惠賣出,如果兩批襯衫全部售完后利潤(rùn)率不低于25%(不考慮其它因素),那么每件襯衫的標(biāo)價(jià)至少是多少元?

查看答案和解析>>

同步練習(xí)冊(cè)答案