【題目】如圖,在Rt△ABC中,∠C=90°,AC,tanB,半徑為2C分別交AC,BC于點(diǎn)DE,得到DE弧.

(1)求證:ABC的切線.

(2)求圖中陰影部分的面積.

【答案】(1)證明見解析;(2)5-π.

【解析】

(1)解直角三角形求出BC根據(jù)勾股定理求出AB,根據(jù)三角形面積公式求出CF,根據(jù)切線的判定得出即可;

(2)分別求出△ACB的面積和扇形DCE的面積,即可得出答案

1)過CCFABF

∵在Rt△ABC,∠C=90°,AC,tanB,∴BC=2由勾股定理得AB5.

∵△ACB的面積S,∴CF2,∴CFC的半徑

CFAB,∴ABC的切線;

(2)圖中陰影部分的面積=SACBS扇形DCE5﹣π

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形ABCD是平行四邊形,下列結(jié)論中錯誤的有(  )

①當(dāng)ABBC時,它是菱形;②當(dāng)ACBD時,它是菱形;③當(dāng)∠ABC90°時,它是矩形;④當(dāng)ACBD時,它是正方形.

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在Rt△ACB中,C為直角頂點(diǎn),∠ABC=25°,O為斜邊AB的中點(diǎn),將OA繞著點(diǎn)O逆時針旋轉(zhuǎn)α(0°<α<180°)到OP.當(dāng)△BCP為等腰三角形時,α的度數(shù)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形EFGH內(nèi)接于△ABC,且邊FG落在BC上,若ADBC,BC3,AD2,EFEH

(1)求證:△AEH∽△ABC;

(2)求矩形EFGH的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在鈍角三角形ABCAB=6cm,AC=12cm動點(diǎn)DA點(diǎn)出發(fā)到B點(diǎn)止,動點(diǎn)EC點(diǎn)出發(fā)到A點(diǎn)止.點(diǎn)D運(yùn)動的速度為1cm/,點(diǎn)E運(yùn)動的速度為2cm.如果兩點(diǎn)同時運(yùn)動那么當(dāng)以點(diǎn)A、D、E為頂點(diǎn)的三角形與△ABC相似時,運(yùn)動的時間是( )

A. 32.8 B. 34.8 C. 14 D. 16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)名著,書中有下列問題:今有勾五步,股十二步,問勾中容方幾何?其意思為今有直角三角形,勾(短直角邊)長為5步,股(長直角邊)長為12步,問該直角三角形能容納的正方形邊長最大是多少步?該問題的答案是________步.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的方程x2+(m﹣3)x﹣m(2m﹣3)=0

(1)證明:無論m為何值方程都有兩個實(shí)數(shù)根;

(2)是否存在正數(shù)m,使方程的兩個實(shí)數(shù)根的平方和等于26?若存在,求出滿足條件的正數(shù)m的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場,為了吸引顧客,在白色情人節(jié)當(dāng)天舉辦了商品有獎酬賓活動,凡購物滿200元者,有兩種獎勵方案供選擇:一是直接獲得20元的禮金券,二是得到一次搖獎的機(jī)會.已知在搖獎機(jī)內(nèi)裝有2個紅球和2個白球,除顏色外其它都相同,搖獎?wù)弑仨殢膿u獎機(jī)內(nèi)一次連續(xù)搖出兩個球,根據(jù)球的顏色(如表)決定送禮金券的多少.

兩紅

一紅一白

兩白

禮金券(元)

18

24

18

1)請你用列表法(或畫樹狀圖法)求一次連續(xù)搖出一紅一白兩球的概率.

2)如果一名顧客當(dāng)天在本店購物滿200元,若只考慮獲得最多的禮品券,請你幫助分析選擇哪種方案較為實(shí)惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A(﹣1,0),B(5,0)兩點(diǎn),直線y=﹣x+3y軸交于點(diǎn)C,與x軸交于點(diǎn)D.點(diǎn)P是直線CD上方的拋物線上一動點(diǎn),過點(diǎn)PPF⊥x軸于點(diǎn)F,交直線CD于點(diǎn)E,設(shè)點(diǎn)P的橫坐標(biāo)為m.

(1)求拋物線的解析式;

(2)PE的長最大時m的值.

(3)Q是平面直角坐標(biāo)系內(nèi)一點(diǎn),在(2)的情況下,以PQCD為頂點(diǎn)的四邊形是平行四邊形是否存在?若存在,直接寫出點(diǎn)Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案