【題目】已知關(guān)于x的方程x2+(m﹣3)x﹣m(2m﹣3)=0

(1)證明:無(wú)論m為何值方程都有兩個(gè)實(shí)數(shù)根;

(2)是否存在正數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的平方和等于26?若存在,求出滿足條件的正數(shù)m的值;若不存在,請(qǐng)說明理由.

【答案】1見解析;(2)

【解析】試題分析:(1)求出根的判別式,再根據(jù)非負(fù)數(shù)的性質(zhì)即可證明

2)根據(jù)一元二次方程根與系數(shù)的關(guān)系即可求得方程兩根的和與兩根的積,兩根的平方和可以用兩根的和與兩根的積表示根據(jù)方程的兩個(gè)實(shí)數(shù)根的平方和等于26,即可得到一個(gè)關(guān)于m的方程求得m的值.

試題解析:(1)證明關(guān)于x的方程x2+m﹣3xm2m﹣3=0的判別式△=m﹣32+4m2m﹣3=9m﹣12≥0無(wú)論m為何值方程都有兩個(gè)實(shí)數(shù)根;

2)解設(shè)方程的兩個(gè)實(shí)數(shù)根為x1、x2x1+x2=m3),x1×x2=m2m3),x12+x22=26,:(x1+x222x1x2=m32+2m2m3=26,整理得5m212m17=0,解這個(gè)方程得m= m=1,所以存在正數(shù)m= ,使得方程的兩個(gè)實(shí)數(shù)根的平方和等于26

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一數(shù)值轉(zhuǎn)換器,原理如圖所示,若開始輸入x的值是7,可發(fā)現(xiàn)第1次輸出的結(jié)果是12,第2次輸出的結(jié)果是6,第3次輸出的結(jié)果是__________,依次繼續(xù)下去……2 016次輸出的結(jié)果是___________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】完成下面的證明

1)如圖,FGCD,∠1=∠3,∠B50°,求∠BDE的度數(shù).

解:∵FGCD(已知)

∴∠2   

又∵∠1=∠3,

∴∠3=∠2(等量代換)

BC   

∴∠B+   180°   

又∵∠B50°

∴∠BDE   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是等腰直角三角形,∠ACB=90°,點(diǎn)E、F分別是邊BC、AC的中點(diǎn),PAB上一點(diǎn),以PF為一直角邊作等腰直角三角形PFQ,且∠FPQ=90°,若AB=10,PB=1,則QE的值為( 。

A. 3 B. 3 C. 4 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知的函數(shù),自變量的取值范圍為,下表是的幾組對(duì)應(yīng)值

0

1

2

3

3.5

4

4.5

1

2

3

4

3

2

1

小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的之間的變化規(guī)律,對(duì)該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小明的探究過程,請(qǐng)補(bǔ)充完整:

(1)如圖,在平面直角坐標(biāo)系中,指出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn). 根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象.

(2)根據(jù)畫出的函數(shù)圖象填空.

①該函數(shù)圖象與軸的交點(diǎn)坐標(biāo)為_____.

②直接寫出該函數(shù)的一條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將半徑為2,圓心角為的扇形繞點(diǎn)逆時(shí)針旋轉(zhuǎn),點(diǎn)、的對(duì)應(yīng)點(diǎn)分別為,,連接,則圖中陰影部分的面積是( )

A. B. C. D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上,點(diǎn)A的坐標(biāo)為(2,4),請(qǐng)解答下列問題:

(1)畫出ABC關(guān)于x軸對(duì)稱的A1B1C1,并寫出點(diǎn)A1的坐標(biāo).

(2)畫出A1B1C1繞原點(diǎn)O旋轉(zhuǎn)180°后得到的A2B2C2,并寫出點(diǎn)A2的坐標(biāo).

【答案】(1)作圖見解析;點(diǎn)A1的坐標(biāo)(2,﹣4);(2)作圖見解析;點(diǎn)A2的坐標(biāo)(﹣2,4).

【解析】

試題分析:(1)分別找出A、B、C三點(diǎn)關(guān)于x軸的對(duì)稱點(diǎn),再順次連接,然后根據(jù)圖形寫出A點(diǎn)坐標(biāo);

(2)將A1B1C1中的各點(diǎn)A1、B1、C1繞原點(diǎn)O旋轉(zhuǎn)180°后,得到相應(yīng)的對(duì)應(yīng)點(diǎn)A2、B2、C2,連接各對(duì)應(yīng)點(diǎn)即得A2B2C2

試題解析:(1)如圖所示:點(diǎn)A1的坐標(biāo)(2,﹣4);

(2)如圖所示,點(diǎn)A2的坐標(biāo)(﹣2,4).

考點(diǎn):1.作圖-旋轉(zhuǎn)變換;2.作圖-軸對(duì)稱變換.

型】解答
結(jié)束】
18

【題目】觀察下面的點(diǎn)陣圖和相應(yīng)的等式,探究其中的規(guī)律:

(1)認(rèn)真觀察,并在④后面的橫線上寫出相應(yīng)的等式.

1=1 1+2==3 1+2+3==6    

(2)結(jié)合(1)觀察下列點(diǎn)陣圖,并在⑤后面的橫線上寫出相應(yīng)的等式.

1=121+3=223+6=326+10=42   

(3)通過猜想,寫出(2)中與第n個(gè)點(diǎn)陣相對(duì)應(yīng)的等式   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,過點(diǎn)C的直線MNAB,DAB邊上一點(diǎn),過點(diǎn)DDEBC,交直線MNE,垂足為F,連接CD,BE.

(1)求證:CEAD

(2)當(dāng)DAB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說明你的理由;

(3)若DAB中點(diǎn),則當(dāng)∠A的大小滿足什么條件時(shí),四邊形BECD是正方形?請(qǐng)說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一次函數(shù)y1=kx+by2=x+a的圖象如圖,則下列結(jié)論:①k0;②a0;③關(guān)于x的方程kxx=ab的解是x=3;④當(dāng)x3時(shí),y1y2中.則正確的序號(hào)有________

查看答案和解析>>

同步練習(xí)冊(cè)答案