【題目】已知是的函數(shù),自變量的取值范圍為,下表是與的幾組對(duì)應(yīng)值
0 | 1 | 2 | 3 | 3.5 | 4 | 4.5 | … | |
1 | 2 | 3 | 4 | 3 | 2 | 1 | … |
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),利用上述表格所反映出的與之間的變化規(guī)律,對(duì)該函數(shù)的圖象與性質(zhì)進(jìn)行了探究.下面是小明的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)如圖,在平面直角坐標(biāo)系中,指出了以上表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn). 根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象.
(2)根據(jù)畫出的函數(shù)圖象填空.
①該函數(shù)圖象與軸的交點(diǎn)坐標(biāo)為_____.
②直接寫出該函數(shù)的一條性質(zhì).
【答案】(1)見(jiàn)解析;(2)①(5,0);②見(jiàn)解析.
【解析】
(1)根據(jù)坐標(biāo),連接點(diǎn)即可得出函數(shù)圖像;
(2)①根據(jù)圖像,當(dāng)x≥3時(shí),根據(jù)兩點(diǎn)坐標(biāo)可得出函數(shù)解析式,進(jìn)而可得出與軸的交點(diǎn)坐標(biāo);
②根據(jù)函數(shù)圖像,相應(yīng)的自變量的取值范圍,可得出其性質(zhì).
(1) 如圖:
(2)①(5,0)
根據(jù)圖像,當(dāng)x≥3時(shí),函數(shù)圖像為一次函數(shù),
設(shè)函數(shù)解析式為,將(3,4)和(4,2)兩點(diǎn)代入,即得
解得
即函數(shù)解析式為
與x軸的交點(diǎn)坐標(biāo)為(5,0);
②答案不唯一.如下幾種答案供參考:
當(dāng)0≤x≤3時(shí),函數(shù)值y隨x值增大而增大;
當(dāng)x≥3時(shí),函數(shù)值y隨x值增大而減;
當(dāng)x=3時(shí),函數(shù)有最大值為4;
該函數(shù)沒(méi)有最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,O是坐標(biāo)原點(diǎn),長(zhǎng)方形OACB的頂點(diǎn)A、B分別在x軸與y軸上,已知OA=6,OB=10.點(diǎn)D為y軸上一點(diǎn),其坐標(biāo)為(0,2),點(diǎn)P從點(diǎn)A出發(fā)以每秒2個(gè)單位的速度沿線段AC﹣CB的方向運(yùn)動(dòng),當(dāng)點(diǎn)P與點(diǎn)B重合時(shí)停止運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)點(diǎn)P經(jīng)過(guò)點(diǎn)C時(shí),求直線DP的函數(shù)解析式;
(2)①求△OPD的面積S關(guān)于t的函數(shù)解析式;
②如圖②,把長(zhǎng)方形沿著OP折疊,點(diǎn)B的對(duì)應(yīng)點(diǎn)B′恰好落在AC邊上,求點(diǎn)P的坐標(biāo).
(3)點(diǎn)P在運(yùn)動(dòng)過(guò)程中是否存在使△BDP為等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】老師在黑板上書寫了一個(gè)正確的演算過(guò)程,隨后用手掌捂住了一個(gè)多項(xiàng)式,形式如下:
(1)求所捂的多項(xiàng)式;
(2)若x為正整數(shù),任取x的幾個(gè)值并求出所捂多項(xiàng)式的值,你能發(fā)現(xiàn)什么規(guī)律?
(3)若所捂多項(xiàng)式的值為144,請(qǐng)直接寫出正整數(shù)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知單位長(zhǎng)度為1的方格中有三角形ABC.
(1)請(qǐng)畫出三角形ABC向上平移3格再向右平移2格后所得到的三角形A′B′C′;
(2)請(qǐng)以點(diǎn)A為坐標(biāo)原點(diǎn)建立平面直角坐標(biāo)系(在圖中畫出),然后寫出點(diǎn)B,B′的坐標(biāo);
(3)求出三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC是一張等腰直角三角形紙板,∠C=Rt∠,AC=BC=2,在這張紙板中剪出一個(gè)盡可能大的正方形稱為第1次剪取,記所得正方形面積為s1(如圖1);在余下的Rt△ADE和Rt△BDF中,分別剪取正方形,得到兩個(gè)相同的正方形,稱為第2次剪取,并記這兩個(gè)正方形面積和為s2(如圖2);繼續(xù)操作下去…;則第10次剪取時(shí),s10= ;第2012次剪取后,余下的所有小三角形的面積之和是
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2+(m﹣3)x﹣m(2m﹣3)=0
(1)證明:無(wú)論m為何值方程都有兩個(gè)實(shí)數(shù)根;
(2)是否存在正數(shù)m,使方程的兩個(gè)實(shí)數(shù)根的平方和等于26?若存在,求出滿足條件的正數(shù)m的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(12分)如圖是某種窗戶的形狀,其上部是半圓形,下部是邊長(zhǎng)相同的四個(gè)小正方形,已知下部的小正方形的邊長(zhǎng)為am,計(jì)算:
(1)窗戶的面積;
(2)窗框的總長(zhǎng);
(3)若a=1,窗戶上安裝的是玻璃,玻璃每平方米25元,窗框每米20元,窗框的厚度不計(jì),求制作這種窗戶需要的費(fèi)用是多少元(π取3.14,結(jié)果保留整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,對(duì)于一個(gè)圖形,通過(guò)兩種不同的方法計(jì)算它的面積,可以得到一個(gè)數(shù)學(xué)等式.例如圖可以得到.請(qǐng)解答下列問(wèn)題:
(1)寫出圖中所表示的數(shù)學(xué)等式;
(2)利用(1)中所得到的結(jié)論,解決下面的問(wèn)題:已知,,求的值;
(3)小明同學(xué)打算用張邊長(zhǎng)為的正方形,張邊長(zhǎng)為的正方形,張相鄰兩邊長(zhǎng)為分別為、的長(zhǎng)方形紙片拼出了一個(gè)面積為 長(zhǎng)方形,那么他總共需要多少?gòu)埣埰?/span>
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩地相距300千米,一輛貨車和一輛轎車先后從甲地出發(fā)向乙地,如圖,線段OA表示貨車離甲地距離y(千米)與時(shí)間x(小時(shí))之間的函數(shù)關(guān)系;折線BCD表示轎車離甲地距離y(千米)與x(小時(shí))之間的函數(shù)關(guān)系.請(qǐng)根據(jù)圖象解答下列問(wèn)題:
(1)轎車到達(dá)乙地后,貨車距乙地多少千米?
(2)求線段CD對(duì)應(yīng)的函數(shù)解析式.
(3)轎車到達(dá)乙地后,馬上沿原路以CD段速度返回,求貨車從甲地出發(fā)后多長(zhǎng)時(shí)間再與轎車相遇(結(jié)果精確到0.01).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com