【題目】探究:
某學(xué)校數(shù)學(xué)社團(tuán)遇到這樣一個(gè)題目:如圖①,在中,點(diǎn)在線段上, , , ,.求的長(zhǎng).
經(jīng)過社團(tuán)成員討論發(fā)現(xiàn),過點(diǎn)作,交的延長(zhǎng)線于點(diǎn),連結(jié),如圖②所示,通過構(gòu)造就可以解決問題.
請(qǐng)你寫出求、的度數(shù)和求長(zhǎng)的過程.
應(yīng)用:
如圖③,在四邊形中,對(duì)角線與相交于點(diǎn), , ,.若,則的長(zhǎng)為 , 的長(zhǎng)為 .
【答案】探究:∠ADB =75°,∠ABD =75°,AB=;應(yīng)用:8,
【解析】
根據(jù)平行線的性質(zhì)可得出∠ADB=∠OAC=75°,結(jié)合∠BOD=∠COA可得出△BOD∽△COA,利用相似三角形的性質(zhì)可求出OD的值,進(jìn)而可得出AD的值,由三角形內(nèi)角和定理可得出∠ABD=75°=∠ADB,由等角對(duì)等邊可得出AB=AD=,此題得解;過點(diǎn)B作BE∥AD交AC于點(diǎn)E,可得出AE=,在Rt△AEB中,利用勾股定理可求出BE的長(zhǎng)度,再在Rt△CAD中,利用勾股定理可求出DC的長(zhǎng).
∵BD∥AC,
∴∠ADB=∠OAC=75°
∵∠BAD=30°,
∴∠ABD=180°-∠BAD-∠ADB=75°.
∴∠ADB=∠ABD.
∴AB=AD.
∵BD∥AC,
∴.
∵AO=,
∴OD=OA=.
∴AD=OA+OD=.
∴AB=.
過點(diǎn)B作BE∥AD交AC于點(diǎn)E,如圖所示.
∵AC⊥AD,BE∥AD,
∴∠DAC=∠BEA=90°.
∵∠AOD=∠EOB,
∴△AOD∽△EOB,
∴.
∵BO:OD=1:3,
∴.
∵AO=3,
∴EO=,
∴AE=.
∵∠ABC=∠ACB=75°,
∴∠BAC=30°,AB=AC,
∴AB=2BE.
在Rt△AEB中,BE2+AE2=AB2,即(4)2+BE2=(2BE)2,
解得:BE=4,
∴AB=AC=8,AD=12.
在Rt△CAD中,AC2+AD2=CD2,即82+122=CD2,
解得:CD=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在平面直角坐標(biāo)系中,圓心為P(x,y)的動(dòng)圓經(jīng)過點(diǎn)A(1,2)且與x軸相切于點(diǎn)B.
(1)當(dāng)x=2時(shí),求⊙P的半徑;
(2)求y關(guān)于x的函數(shù)解析式;判斷此函數(shù)圖象的形狀;并在圖②中畫出此函數(shù)的圖象;
(3)當(dāng)⊙P的半徑為1時(shí),若⊙P與以上(2)中所得函數(shù)圖象相交于點(diǎn)C、D,其中交點(diǎn)D(m,n)在點(diǎn)C的右側(cè),請(qǐng)利用圖②,求cos∠APD的大。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y1=x2-2x,直線y2=-2x+b相交于A,B兩點(diǎn),其中點(diǎn)A的橫坐標(biāo)為2.當(dāng)x任取一值時(shí),x對(duì)應(yīng)的函數(shù)值分別為y1,y2,取m=(|y1-y2|+y1+y2).則
A. 當(dāng)x<-2時(shí),m=y2.B. m隨x的增大而減。
C. 當(dāng)m=2時(shí),x=0.D. m≥-2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),ABCD的邊AB在x軸上,頂點(diǎn)D在y軸的正半軸上,點(diǎn)C在第一象限,將△AOD沿y軸翻折,使點(diǎn)A落在x軸上的點(diǎn)E處,點(diǎn)B恰好為OE的中點(diǎn),DE與BC交于點(diǎn)F.若y(k≠0)圖象經(jīng)過點(diǎn)C,且S△BEF=1,則k的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年12月17日,我國第一艘國產(chǎn)航母“山東艦”在海南三亞交付海軍.如圖,“山東艦”在一次試水測(cè)試中,航行至處,觀測(cè)指揮塔位于南偏西方向,在沿正南方向以30海里/小時(shí)的速度勻速航行2小時(shí)后,到達(dá)處,再觀測(cè)指揮塔位于南偏西方向,若繼續(xù)向南航行.求“山東艦”與指揮塔之間的最近距離為多少海里?(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】盒中有x枚黑棋和y枚白棋,這些棋除顏色外無其他差別.
(1)從盒中隨機(jī)取出一枚棋子,如果它是黑棋的概率是,寫出表示x和y關(guān)系的表達(dá)式.
(2)往盒中再放進(jìn)10枚黑棋,取得黑棋的概率變?yōu)?/span>,求x和y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O 的半徑長(zhǎng)為2,點(diǎn)C為直徑AB的延長(zhǎng)線上一點(diǎn),且BC=2.過點(diǎn)C任作一條直線l.若直線l上總存在點(diǎn)P,使得過點(diǎn)P所作的⊙O 的兩條切線互相垂直,則∠ACP的最大值等于__________°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=﹣2x+8與反比例函數(shù)(x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn),與x軸交于D點(diǎn).
(1)求反比例函數(shù)的解析式.
(2)在第一象限內(nèi),根據(jù)圖象直接寫出一次函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線與拋物線相交于A,B兩點(diǎn),且點(diǎn)A(1,-4)為拋物線的頂點(diǎn),點(diǎn)B在x軸上。
(1)求拋物線的解析式;
(2)在(1)中拋物線的第二象限圖象上是否存在一點(diǎn)P,使△POB與△POC全等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)若點(diǎn)Q是y軸上一點(diǎn),且△ABQ為直角三角形,求點(diǎn)Q的坐標(biāo)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com