【題目】已知拋物線y=x2-4x+3與x軸相交于點A,B(點A在點B左側(cè)),頂點為M.平移該拋物線,使點M平移后的對應(yīng)點M'落在x軸上,點B平移后的對應(yīng)點B'落在y軸上.則平移后的拋物線解析式為 ( )
A. y=x2+2x+1 B. y=x2+2x-1 C. y=x2-2x+1 D. y=x2-2x-1
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,有一個玩具火車放置在數(shù)軸上,若將火車在數(shù)軸上水平移動,則當(dāng)A點移動到B點時,B點所對應(yīng)的數(shù)為15 ,當(dāng)B點移動到A點時,A點所對應(yīng)的數(shù)為3(單位:單位長度).由此可得
(1)玩具火車的長為 個單位長度.
(2)你能解決下面問題嗎?
一天,小明去問奶奶的年齡,奶奶說:“我若是你現(xiàn)在這么大,你還要40年才出生呢;你若是我現(xiàn)在這么大,我已是老壽星,116歲了!”小明心想:奶奶的年齡到底是多少歲呢?請你幫他求出來。
(3)在(1)的條件下數(shù)軸上放置與AB一模一樣的玩具火車CD,使原點與C重合,兩列玩具火車分別從O和A同時向右出發(fā),已知CD火車速度1個單位/秒,AB火車速度為0.5個單位/秒,問幾秒兩火車頭A與C相距1個單位?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對一張矩形紙片ABCD進(jìn)行折疊,具體操作如下:
第一步:先對折,使AD與BC重合,得到折痕MN,展開;
第二步:再一次折疊,使點A落在MN的點A′處,并使折痕經(jīng)過點B,得到折痕BE,同時,得到線段BA′,EA′,展開,如圖1;
第三步:再沿EA′所在的直線折疊,點B落在AD的點B′處,得到折痕EF,同時得到線段B′F,展開,如圖2.
(1)證明:∠ABE=30°;
(2)證明:四邊形BFB′E為菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OABC是一張放在平面直角坐標(biāo)系中的矩形紙片,O為原點,點A在x軸的正半軸上,點C在y軸的正半軸上,OA=10,OC=8,在OC邊上取一點D,將紙片沿AD翻折,使點O落在BC邊上的點E處,則D點的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市進(jìn)行“新城區(qū)改造建設(shè)”,有甲、乙兩種車參加運(yùn)土,已知5輛甲種車和2輛乙種車一次共可運(yùn)土64米,3輛甲種車和1輛乙種車一次共可運(yùn)土36米.
(1)求甲、乙兩種車每輛一次可分別運(yùn)土多少米;
(2)某公司派甲、乙兩種汽車共10輛參加運(yùn)土,且一次運(yùn)土總量不低于100米,求公司最多要派多少輛甲種汽車參加運(yùn)土.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校準(zhǔn)備建一條5米寬的文化長廊,并按下圖方式鋪設(shè)邊長為1米的正方形地磚,圖中陰影部分為彩色地磚,白色部分為普通地磚.
(1)如果長廊長8米,則需要彩色地磚______塊,普通地磚______塊;
如果長廊長9米,則需要彩色地磚______塊,普通地磚______塊;
(2)如果長廊長2a米(a為正整數(shù)),則需要彩色地磚______塊;
如果長廊長(2a+1)米(a為正整數(shù)),則需要彩色地磚______塊;
(3)購買時,恰逢地磚市場地磚促銷,彩色地磚原價為100元/塊,普通地磚原價為40元/塊,優(yōu)惠方案為:買一塊彩色地磚贈送一塊普通地磚.
①如果長廊長x米(x為整數(shù)),用含x代數(shù)式表示購買地磚所需的錢數(shù);
②當(dāng)x=51米時,求購買地磚所需錢數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】九(1)班數(shù)學(xué)興趣小組經(jīng)過市場調(diào)查,整理出某種商品在第x()天的售價與銷量的相關(guān)信息如下表:
時間(天) | ||
售價(元/件) | x+40 | 90 |
每天銷量(件) | 200-2x | 200-2x |
(1)求出y與x的函數(shù)關(guān)系式;
(2)問銷售該商品第幾天時,當(dāng)天銷售利潤最大?最大利潤是多少?
(3)該商品在銷售過程中,共有多少天每天銷售利潤不低于4800元?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,AE平分∠BAD,交BC于點E,且AB=AE,延長AB與DE的延長線交于點F.下列結(jié)論中:①△ABC≌△AED;②△ABE是等邊三角形;③AD=AF;④S△ABE=S△CDE;⑤S△ABE=S△CEF.其中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A、B是反比例函數(shù)y=上兩點,AC⊥y軸于C,BD⊥x軸于D,AC=BD=OC,S四邊形ABDC=14,則k= .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com