【題目】下列事件(1)打開電視機(jī),正在播放新聞; (2)父親的年齡比他兒子年齡大;(3)下個星期天會下雨;(4)拋擲兩枚質(zhì)地均勻的骰子,向上一面的點數(shù)之和是1;(5)一個實數(shù)的平方是正數(shù)(6)若a、b異號,則a+b<0.屬于確定事件的有(

A. 1 B. 2 C. 3 D. 4

【答案】B

【解析】

根據(jù)事件發(fā)生的可能性大小判斷相應(yīng)事件的類型即可

1)打開電視機(jī),正在播放新聞是隨機(jī)事件; (2)父親的年齡比他兒子年齡大是必然事件;(3)下個星期天會下雨是隨機(jī)事件;(4)拋擲兩枚質(zhì)地均勻的骰子,向上一面的點數(shù)之和是1是不可能事件;(5)一個實數(shù)的平方是正數(shù)是隨機(jī)事件;(6)若a、b異號,則a+b0是隨機(jī)事件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=8,BC=6,P為AD上一點,將△ABP沿BP翻折至△EBP,PE與CD相交于點O,BE與CD相交于點G,且OE=OD.
(1)求證:OP=OG;
(2)若設(shè)AP為x,試求CG(用含x的代數(shù)式表示);
(3)求AP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一海輪位于燈塔P的西南方向,距離燈塔40了2海里的A處,它沿正東方向航行一段時間后,到達(dá)位于燈塔P的南偏東60°方向上的B處,求航程AB的值(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【現(xiàn)場學(xué)習(xí)】
定義:我們把絕對值符號內(nèi)含有未知數(shù)的方程叫做“含有絕對值的方程”.
如:|x|=2,|2x﹣1|=3,| |﹣x=1,…都是含有絕對值的方程.
怎樣求含有絕對值的方程的解呢?基本思路是:含有絕對值的方程→不含有絕對值的方程.
我們知道,根據(jù)絕對值的意義,由|x|=2,可得x=2或x=﹣2.
(1)[例]解方程:|2x﹣1|=3.
我們只要把2x﹣1看成一個整體就可以根據(jù)絕對值的意義進(jìn)一步解決問題.
解:根據(jù)絕對值的意義,得2x﹣1=3或2x﹣1=
解這兩個一元一次方程,得x=2或x=﹣1.
檢驗:
①當(dāng)x=2時,
原方程的左邊=|2x﹣1|=|2×2﹣1|=3,
原方程的右邊=3,
∵左邊=右邊
∴x=2是原方程的解.
②當(dāng)x=﹣1時,
原方程的左邊=|2x﹣1|=|2×(﹣1)﹣1|=3,
原方程的右邊=3,
∵左邊=右邊
∴x=﹣1是原方程的解.
綜合①②可知,原方程的解是:x=2,x=﹣1.
【解決問題】
解方程:| |﹣x=1.
(2)【解決問題】解方程:| |﹣x=1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】邊長為724,25ABC內(nèi)有一點P到三邊的距離相等,則這個距離是(  )

A. 1.5 B. 3 C. 4 D. 6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列各數(shù)中,小于﹣3的數(shù)是(
A.2
B.1
C.﹣2
D.﹣4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩位同學(xué)在一次用頻率估計概率的實驗中統(tǒng)計了某一結(jié)果出現(xiàn)的頻率給出的統(tǒng)計圖如圖所示,則符合這一結(jié)果的實驗可能是(  )

A.擲一枚正六面體的骰子,出現(xiàn)5點的概率
B.擲一枚硬幣,出現(xiàn)正面朝上的概率
C.任意寫出一個整數(shù),能被2整除的概率
D.一個袋子中裝著只有顏色不同,其他都相同的兩個紅球和一個黃球,從中任意取出一個是黃球的概率

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2x2﹣3xy+4y2)(﹣xy)=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下面的計算不正確的是( )
A.a10÷a9=a
B.b-6·b4=
C.(-bc)4÷(-bc)2=-b2c2
D.b5+b5=2b5

查看答案和解析>>

同步練習(xí)冊答案