【題目】如圖所示雙曲線y=與y=﹣分別位于第三象限和第二象限,A是y軸上任意一點,B是y=﹣上的點,C是y=上的點,線段BC⊥x軸于D,且4BD=3CD,則下列說法:①雙曲線y=在每個象限內(nèi),y隨x的增大而減小;②若點B的橫坐標(biāo)為﹣3,則C點的坐標(biāo)為(﹣3,);③k=4;④△ABC的面積為定值7,正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△ABC的直角邊BC在x軸上,斜邊AC上的中線BD交y軸于點E,雙曲線的圖象經(jīng)過點A,若△BEC的面積為4,則k的值為( 。
A. 8B. 8C. 16D. 16
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形OABC中,OA∥BC,A、B兩點的坐標(biāo)分別為A(13,0),B(11,12).動點P、Q分別從O、B兩點出發(fā),點P以每秒2個單位的速度沿x軸向終點A運動,點Q以每秒1個單位的速度沿BC方向運動;當(dāng)點P停止運動時,點Q也同時停止運動.線段PQ和OB相交于點D,過點D作DE∥x軸,交AB于點E,射線QE交x軸于點F.設(shè)動點P、Q運動時間為t(單位:秒).
(1)當(dāng)t為何值時,四邊形PABQ是平行四邊形.
(2)△PQF的面積是否發(fā)生變化?若變化,請求出△PQF的面積s關(guān)于時間t的函數(shù)關(guān)系式;若不變,請求出△PQF的面積.
(3)隨著P、Q兩點的運動,△PQF的形狀也隨之發(fā)生了變化,試問何時會出現(xiàn)等腰△PQF?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以O為原點的直角坐標(biāo)系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)(x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是12,則k=( )
A. 6 B. 9 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的直徑AB=12cm,AM和BN是它的兩條切線,DE切⊙O于E,交AM于D,BN于C,設(shè)AD=x,BC=y,求y與x的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰梯形ABCD放置在平面坐標(biāo)系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函數(shù)的圖象經(jīng)過點C.
(1)求點C的坐標(biāo)和反比例函數(shù)的解析式;
(2)將等腰梯形ABCD向上平移2個單位后,問點B是否落在雙曲線上?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AC=BC=5,AB=8,AB⊥x軸,垂足為A,反比例函數(shù)y=(x>0)的圖象經(jīng)過點C,交AB于點D.
(1)若OA=AB,求k的值;
(2)若BC=BD,連接OC,求△OAC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,頂角為36°的等腰三角形,其底邊與腰之比等,這樣的三角形稱為黃金三角形,已知腰AB=1,△ABC為第一個黃金三角形,△BCD為第二個黃金三角形,△CDE為第三個黃金三角形,以此類推,第2014個黃金三角形的周長( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將兩塊全等的三角板如圖1擺放,其中∠A1CB1=∠ACB=90°,∠A1=∠A=30°.
(1)將圖1中△A1B1C繞點C順時針旋轉(zhuǎn)45°得圖2,點P1是A1C與AB的交點,點Q是A1B1與BC的交點,求證:CP1=CQ;
(2)在圖2中,若AP1=a,則CQ等于多少?
(3)將圖2中△A1B1C繞點C順時針旋轉(zhuǎn)到△A2B2C(如圖3),點P2是A2C與AP1的交點.當(dāng)旋轉(zhuǎn)角為多少度時,有△AP1C∽△CP1P2?這時線段CP1與P1P2之間存在一個怎樣的數(shù)量關(guān)系?.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com