【題目】如圖1,經(jīng)過等邊的頂點,(圓心在內(nèi)),分別與,的延長線交于點,,連結(jié),交于點.
(1)求證:.
(2)當(dāng),時,求的長。
(3)設(shè),.
①求關(guān)于的函數(shù)表達式;
②如圖2,連結(jié),,若的面積是面積的10倍,求的值.
【答案】(1)證明見解析;(2);(3)①; ②或.
【解析】
(1)根據(jù)等邊三角形的性質(zhì)和圓周角定理解答即可;
(2)過點A作AG⊥BC于點G,根據(jù)等邊三角形的性質(zhì)和勾股定理解得即可;
(3)①過點E作EH⊥AD于點H,根據(jù)三角函數(shù)和函數(shù)解析式解得即可;
②過點O作OM⊥BC于點M,根據(jù)相似三角形的判定和性質(zhì)解答即可.
(1)證明:∵為等邊三角形,
∴.
∵,,
∴.
∴.
(2)解:如圖,過點作于點.
∵為等邊三角形,,
∴.
∴在中,.
∵,
∴.
∴.
∵,
∴.
∴.
∴在中,.
(3)解:①如圖,過點作于點.
∵,
∴在中,.
∴,,
∴,
∵.
∴.
∴.
∴在中,.
.
②如圖,過點作于點.
設(shè).
∵,
∴./p>
∴.
∴.
∴.
∵,
∴.
∴.
∵.
∴,
∴的面積,
∴的面積.
∵的面積是的面積10倍,
∴,
∴.
解得,.
∴或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是某品牌太陽能熱水器的側(cè)面示意圖.已知鐵架水平橫管平行于水平線AD,長為的真空管與水平線的夾角為37°,鐵架的傾斜角為22°,鐵架豎直管的長度為05 ,根據(jù)以上信息,請求出:
(1))真空管上端到水平線的距離;
(2)水平橫管的長度(結(jié)果精確到0.1 )(參考數(shù)據(jù):,,,,,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】中華文明,源遠流長;中華漢字,寓意深廣.為傳承中華優(yōu)秀傳統(tǒng)文化,某校團委組織了一次全校3000名學(xué)生參加的“漢字聽寫”大賽.為了解本次大賽的成績,校團委隨機抽取了其中200名學(xué)生的成績作為樣本進行統(tǒng)計,制成如下不完整的統(tǒng)計圖表:
頻數(shù)頻率分布表
成績x(分) | 頻數(shù)(人) | 頻率 |
50≤x<60 | 10 | 0.05 |
60≤x<70 | 30 | 0.15 |
70≤x<80 | 40 | n |
80≤x<90 | m | 0.35 |
90≤x≤100 | 50 | 0.25 |
根據(jù)所給信息,解答下列問題:
(1)m= ,n= ;
(2)補全頻數(shù)分布直方圖;
(3)這200名學(xué)生成績的中位數(shù)會落在 分?jǐn)?shù)段;
(4)若成績在90分以上(包括90分)為“優(yōu)”等,請你估計該校參加本次比賽的3000名學(xué)生中成績是“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊三角形ABC中,D是邊AC上一點,連接BD,將△BCD繞點B逆時針旋轉(zhuǎn)60°,得到△BAE,連接ED,若BC=5,BD=4,有下列結(jié)論:①AE∥BC;②∠ADE=∠BDC;③△BDE是等邊三角形;④△ADE的周長是9.其中,正確結(jié)論的個數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,過原點的直線與反比例函數(shù)的圖象交于,兩點,點在第一象限點在軸正半軸上,連結(jié)交反比例函數(shù)圖象于點.為的平分線,過點作的垂線,垂足為,連結(jié).若,的面積為8,則的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中,直線分別交軸和軸于點.
(1)如圖1,已知經(jīng)過點,且與直線相切于點,求的直徑長;
(2)如圖2,已知直線分別交軸和軸于點和點,點是直線上的一個動點,以為圓心,為半徑畫圓.
①當(dāng)點與點重合時,求證: 直線與相切;
②設(shè)與直線相交于兩點, 連結(jié). 問:是否存在這樣的點,使得是等腰直角三角形,若存在,求出點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知拋物線過點.
(1)求拋物線的解析式及其頂點C的坐標(biāo);
(2)設(shè)點D是x軸上一點,當(dāng)時,求點D的坐標(biāo);
(3)如圖2.拋物線與y軸交于點E,點P是該拋物線上位于第二象限的點,線段PA交BE于點M,交y軸于點N,和的面積分別為,求的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了開展“陽光體育運動”,計劃購買籃球、足球共60個,已知每個籃球的價格為70元,每個足球的價格為80元.
(1)若購買這兩類球的總金額為4600元,求籃球、足球各買了多少個?
(2)若購買籃球的總金額不超過購買足球的總金額,求最多可購買多少個籃球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A型、B型、C型三張矩形卡片的邊長如圖所示,將三張矩形卡片分別放入三個信封中,三個信封的外表完全相同;
(1)從這三個信封中隨機抽取1個信封,則抽中A型矩形的概率為______;
(2)先從這三個信封中隨機抽取1個信封(不放回),再從余下的兩個信封中隨機抽取1個信封,求事件“兩次抽中的矩形卡片能拼成(無重疊無縫隙)一個新矩形”發(fā)生的概率.(列表法或樹狀圖)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com