【題目】如圖,ABCD、CEFG是正方形,E在CD上,直線BE、DG交于H,且HEHB=4-2,BD、AF交于M,當(dāng)E在線段CD(不與C、D重合)上運動時,下列四個結(jié)論:①BE⊥GD;②AF、GD所夾的銳角為45°;③GD=AM;④若BE平分∠DBC,則正方形ABCD的面積為4,其中結(jié)論正確的是______(填序號)
【答案】①②③④
【解析】
①由已知條件可證得△BEC≌△DGC,∠EBC=∠CDG,因為∠BDC+∠DBH+∠EBC=90°,所以∠BDC+∠DBH+∠CDG=90°,即BE⊥GD,故①正確;②若以BD為直徑作圓,那么此圓必經(jīng)過A、B、C、H、D五點,根據(jù)圓周角定理即可得到∠AHD=45°,所以②的結(jié)論也是正確的.③此題要通過相似三角形來解;由②的五點共圓,可得∠BAH=∠BDH,而∠ABD=∠DBG=45°,由此可判定△ABM∽△DBG,根據(jù)相似三角形的比例線段即可得到AM、DG的比例關(guān)系;④若BE平分∠DBC,那么H是DG的中點;易證得△ABH∽△BCE,得BDBC=BEBH,即BC2=BEBH,因此只需求出BEBH的值即可得到正方形的面積,可先求出BE、EH的比例關(guān)系,代入已知的乘積式中,即可求得BEBH的值,由此得解.
解:①正確,證明如下:
∵BC=DC,CE=CG,∠BCE=∠DCG=90°,
∴△BEC≌△DGC,∴∠EBC=∠CDG,
∵∠BDC+∠DBH+∠EBC=90°,
∴∠BDC+∠DBH+∠CDG=90°,即BE⊥GD,故①正確;
②由于∠BAD、∠BCD、∠BHD都是直角,因此A、B、C、D、H五點都在以BD為直徑的圓上;
由圓周角定理知:∠DHA=∠ABD=45°,故②正確;
③由②知:A、B、C、D、H五點共圓,則∠BAH=∠BDH;
又∵∠ABD=∠DBG=45°,
∴△ABM∽△DBG,得AM:DG=AB:BD=1:,即DG=AM;
故③正確;
④過H作HN⊥CD于N,連接EG;
若BH平分∠DBG,且BH⊥DG,已知:BH垂直平分DG;
得DE=EG,H是DG中點,HN為△DCG的中位線;
設(shè)CG=x,則:HN=x,EG=DE=x,DC=BC=(+1)x;
∵HN⊥CD,BC⊥CD,
∴HN∥BC,
∴∠NHB=∠EBC,∠ENH=∠ECB,
∴△BEC∽△HEN,則BE:EH=BC:HN=2+2,即EH=;
∴HEBH=BH=4-2,即BEBH=4;
∵∠DBH=∠CBE,且∠BHD=∠BCE=90°,
∴△DBH∽△EBC,得:DBBC=BEBH=4,
即BC2=4,得:BC2=4,即正方形ABCD的面積為4;
故④正確;
故答案為:①②③④.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,CD是⊙O的切線,點C在直徑AB的延長線上.
(1)求證:∠CAD=∠BDC;
(2)若BD=AD,AC=3,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠BAC=60°,AB=6,將△ABC繞點A逆時針方向旋轉(zhuǎn)60°得到△AB′C′,求線段B′C的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某種商品的進(jìn)價為每件30元該商品在第x天的售價是y1(單位:元/件),銷量是y2(單位:件),且滿足關(guān)系式,y2=200﹣2x,設(shè)每天銷售該商品的利潤為w元.
(1)寫出w與x的函數(shù)關(guān)系式;
(2)銷售該商品第幾天時,當(dāng)天銷售利潤最大?最大利潤是多少?
(3)該商品銷售過程中,共有多少天日銷售利潤不低于4800元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某新型高科技商品,每件的售價比進(jìn)價多6元,5件的進(jìn)價相當(dāng)于4件的售價,每天可售出200件,經(jīng)市場調(diào)查發(fā)現(xiàn),如果每件商品漲價1元,每天就會少賣5件.
(1)該商品的售價和進(jìn)價分別是多少元?
(2)設(shè)每天的銷售利潤為w元,每件商品漲價x元,則當(dāng)售價為多少元時,該商品每天的銷售利潤最大,最大利潤為多少元?
(3)為增加銷售利潤,營銷部推出了以下兩種銷售方案:方案一:每件商品漲價不超過8元;方案二:每件商品的利潤至少為24元,請比較哪種方案的銷售利潤更高,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點E在直角三角形ABC的斜邊AB上,以AE為直徑的⊙O與直角邊BC相切于點D.
(1)請僅用無刻度的直尺在圖1中作出∠BAC的平分線;
(2)請僅用無刻度的直尺在圖2中的線段BC上取一個點P,使CP=EF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:拋物線C1:y=﹣(x+m)2+m2(m>0),拋物線C2:y=(x﹣n)2+n2(n>0),稱拋物線C1,C2互為派對拋物線,例如拋物線C1:y=﹣(x+1)2+1與拋物線C2:y=(x﹣)2+2是派對拋物線,已知派對拋物線C1,C2的頂點分別為A,B,拋物線C1的對稱軸交拋物線C2于C,拋物線C2的對稱軸交拋物線C1與D.
(1)已知拋物線①y=﹣x2﹣2x,②y=(x﹣3)2+3,③y=(x﹣)2+2,④y=x2﹣x+,則拋物線①②③④中互為派對拋物線的是 (請在橫線上填寫拋物線的數(shù)字序號);
(2)如圖1,當(dāng)m=1,n=2時,證明AC=BD;
(3)如圖2,連接AB,CD交于點F,延長BA交x軸的負(fù)半軸于點E,記BD交x軸于G,CD交x軸于點H,∠BEO=∠BDC.
①求證:四邊形ACBD是菱形;
②若已知拋物線C2:y=(x﹣2)2+4,請求出m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=﹣x2+bx+c經(jīng)過直線y=﹣x+3與坐標(biāo)軸的兩個交點A、B,與x軸的另一個交點為C,頂點為D.
(1)求拋物線的解析式;
(2)畫出拋物線的圖象;
(3)在x軸上是否存在點N使△ADN為直角三角形?若存在,求出點N的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線過、兩點,點、關(guān)于拋物線的對稱軸對稱,過點作軸,交軸于點.
(1)求拋物線的解析式;
(2)直接寫出點坐標(biāo),并求的面積;
(3)點為拋物線上一動點,且位于第四象限,當(dāng)面積為6時,求出點坐標(biāo);
(4)若點在直線上運動,點在軸上運動,當(dāng)以、、為頂點的三角形為等腰直角三角形時,直接寫出此時點的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com