如圖,以矩形ABCD的邊AB為直徑作圓,過(guò)C作直線CP切圓于點(diǎn)P,過(guò)點(diǎn)P作PQ⊥AB于Q,PQ分別交CD、AC于E、F,記AQ=m,QB=n(m>n).
(1)用含m、n的代數(shù)式表示PC的長(zhǎng);
(2)求證:直線AC平分線段PQ.

【答案】分析:(1)連接PA、PB,由圓周角定理可以得知∠APB=90°利用三角形相似表示出PQ,在直角三角形PEC中利用勾股定理就可以表示出PC.
(2)由PQ⊥AB及四邊形ABCD是矩形可知PQ∥BC,而得到三角形相似證明FQ=PQ,從而使問(wèn)題得到解決.
解答:(1)解:連接PA、PB
∵AB是直徑,
∴∠APB=90°
設(shè)CP=x,則CB=CP=x
∵PQ⊥AB
∴△APQ∽△PBQ
∴PQ2=AQ•QB
∴PQ=
∴PE=,又CE=n
在Rt△PCE中有PC2=PE2+EC2

∴x=;

(2)證明:∵PQ∥CB

∴FQ==
∴FQ=PQ
∴直線AC平分線段PQ.
點(diǎn)評(píng):本題考查了切線的性質(zhì),勾股定理,矩形的性質(zhì),平行線分線段成比例定理及相似三角形的判定及性質(zhì)的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,以矩形ABCD的邊AB為直徑作圓,過(guò)C作直線CP切圓于點(diǎn)P,過(guò)點(diǎn)P作PQ⊥AB于Q,PQ分別精英家教網(wǎng)交CD、AC于E、F,記AQ=m,QB=n(m>n).
(1)用含m、n的代數(shù)式表示PC的長(zhǎng);
(2)求證:直線AC平分線段PQ.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,以矩形ABCD的對(duì)角線AC的中點(diǎn)O為圓心,OA長(zhǎng)為半徑作⊙O,⊙O經(jīng)過(guò)B、D兩點(diǎn),過(guò)點(diǎn)B作BK⊥AC,垂足為K.過(guò)D作DH∥KB,DH分別與AC、AB、⊙O及CB的延長(zhǎng)線相交于點(diǎn)E、F、G、H.
(1)求證:AE=CK;
(2)如果AB=a,AD=
13
a
(a為大于零的常數(shù)),求BK的長(zhǎng):
(3)若F是EG的中點(diǎn),且DE=6,求⊙O的半徑和GH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,以矩形ABCD的邊AB所在直線為軸將其旋轉(zhuǎn)一周,所形成的幾何體的俯視圖是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(本小題滿分1 0分)
已知:如圖,以矩形ABCD的對(duì)角線AC的中點(diǎn)O為圓心,OA長(zhǎng)為半徑作⊙O,⊙O經(jīng)過(guò)B、D兩點(diǎn),過(guò)點(diǎn)B作BK⊥ A C,垂足為K。過(guò)D作DH∥KB,DH分別與AC、AB、⊙O及CB的延長(zhǎng)線相交于點(diǎn)E、F、G、H.

【小題1】(1)求證:AE=CK;
【小題2】(2)如果AB=,AD= (為大于零的常數(shù)),求BK的長(zhǎng):
【小題3】(3)若F是EG的中點(diǎn),且DE=6,求⊙O的半徑和GH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2011年初中畢業(yè)升學(xué)考試(四川成都卷)數(shù)學(xué)解析版 題型:解答題

(2011•成都)已知:如圖,以矩形ABCD的對(duì)角線AC的中點(diǎn)O為圓心,OA長(zhǎng)為半徑作⊙O,⊙O經(jīng)過(guò)B、D兩點(diǎn),過(guò)點(diǎn)B作BK⊥AC,垂足為K.過(guò)D作DH∥KB,DH分別與AC、AB、⊙O及CB的延長(zhǎng)線相交于點(diǎn)E、F、G、H.
(1)求證:AE=CK;
(2)如果AB=a,AD=(a為大于零的常數(shù)),求BK的長(zhǎng):
(3)若F是EG的中點(diǎn),且DE=6,求⊙O的半徑和GH的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案