【題目】如圖,正方形,分別在邊, 連接分別在邊, 連接,,___.

【答案】13

【解析】

根據(jù)題意可證明△ ABE≌△BCF,從而可得CF=BE,根據(jù)平行線等分線段定理由題意可知BM=NF+CF,然后分點NCF上和DF上兩種情況計算即可.

AEBF,ABCD為正方形,

∴∠EAB+ABF=90°,∠FBC+ABF=90°,

∴∠EAB=FBC

又∵AB=BC,∠ABE=C

∴△ ABE≌△BCF,

BE=CF

當點NDF上時,如圖所示:

MNBC,

BM=CF+NF=BE+NF=2+1=3;

當點NCF上時,如圖所示:

MNBC,

BM=CFNF=BENF=21=1.

故本題答案為:13.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線yx2+bx+cx軸交于點A和點B,與y軸交于點C,點B的坐標為(3,0),點C的坐標為(0,﹣5).有一寬度為1,長度足夠長的矩形(陰影部分)沿x軸方向平移,與y軸平行的一組對邊交拋物線于點P和點Q,交直線AC于點M和點N,交x軸于點E和點F

1)求拋物線的解析式及點A的坐標;

2)當點MN都在線段AC上時,連接MF,如果sinAMF,求點Q的坐標;

3)在矩形的平移過程中,是否存在以點P,QM,N為頂點的四邊形是平行四邊形,若存在,求出點M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合實踐課上,某小組同學將直角三角形紙片放到橫線紙上(所有橫線都平行,且相鄰兩條平行線的距離為1),使直角三角形紙片的頂點恰巧在橫線上,發(fā)現(xiàn)這樣能求出三角形的邊長.

1)如圖1,已知等腰直角三角形紙片ABC,ACB=90°AC=BC,同學們通過構造直角三角形的辦法求出三角形三邊的長,則AB=__________

2)如圖2,已知直角三角形紙片DEF,DEF=90°EF=2DE,求出DF的長;

3)在(2)的條件下,若橫格紙上過點E的橫線與DF相交于點G,直接寫出EG的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為大力弘揚“奉獻、友愛、互助、進步”的志愿服務精神,傳播“奉獻他人、提升自我”的志愿服務理念,市實驗學校利用周末時間開展了“助老助殘、社區(qū)服務、生態(tài)環(huán)保、網(wǎng)絡文明”四個志愿服務活動(每人只參加一個活動),九年級(6)班全班同學都參加了志愿服務活動,班長為了解志愿服務活動的情況,收集整理數(shù)據(jù)后,繪制成以下不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題:

(1)求該班的人數(shù);

(2)請把折線統(tǒng)計圖補充完整;

(3)小明和小麗參加志愿服務活動,請用樹狀圖或列表法求出他們參加同一服務活動的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a,b,c分別為ABC三邊的長.

(1)如果x=-1是方程的根,試判斷ABC的形狀,并說明理由;

(2)如果方程有兩個相等的實數(shù)根,試判斷ABC的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校準備購買若干臺電腦和打印機,如果購買臺電腦和臺打印機,一共花費元;如果購買臺電腦和臺打印機,一共花費元;

(1)求每臺電腦和每臺打印機的價格分別是多少元?

(2)如果學校購買電腦和打印機的預算費用不超過,并且購買打印機的臺數(shù)要比購買電腦的臺數(shù)多臺,那么該學校最多能購買多少臺打印機?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為落實美麗撫順的工作部署,市政府計劃對城區(qū)道路進行了改造,現(xiàn)安排甲、乙兩個工程隊完成.已知甲隊的工作效率是乙隊工作效率的倍,甲隊改造360米的道路比乙隊改造同樣長的道路少用3天.

(1)甲、乙兩工程隊每天能改造道路的長度分別是多少米?

(2)若甲隊工作一天需付費用7萬元,乙隊工作一天需付費用5萬元,如需改造的道路全長1200米,改造總費用不超過145萬元,至少安排甲隊工作多少天?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,內(nèi)接于⊙,是⊙的直徑,.平分交⊙,交于點,連接,若的面積是5,則的面積是________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線x軸相交于A,B兩點,與y軸相交于點C,已知拋物線的對稱軸所在的直線是,點B的坐標為

拋物線的解析式是______

若點P是直線BC下方拋物線上一動點,當時,求出點P的坐標;

Mx軸上一動點,在拋物線上是否存在點N,使得點BC,M,N構成的四邊形是菱形?若存在,求出N點的坐標;若不存在,請說明理由.

查看答案和解析>>

同步練習冊答案