【題目】(10分)如圖1,在Rt△ABC中,∠B=90°,BC=2AB=8,點D,E分別是邊BC,AC的中點,連接DE. 將△EDC繞點C按順時針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α.
(1)問題發(fā)現(xiàn)
① 當時,;② 當時,
(2)拓展探究
試判斷:當0°≤α<360°時,的大小有無變化?請僅就圖2的情況給出證明.
(3)問題解決
當△EDC旋轉(zhuǎn)至A、D、E三點共線時,直接寫出線段BD的長.
【答案】(1)①,②.(2)無變化;理由參見解析.(3),.
【解析】
試題(1)①當α=0°時,在Rt△ABC中,由勾股定理,求出AC的值是多少;然后根據(jù)點D、E分別是邊BC、AC的中點,分別求出AE、BD的大小,即可求出的值是多少.
②α=180°時,可得AB∥DE,然后根據(jù),求出的值是多少即可.
(2)首先判斷出∠ECA=∠DCB,再根據(jù),判斷出△ECA∽△DCB,即可求出的值是多少,進而判斷出的大小沒有變化即可.
(3)根據(jù)題意,分兩種情況:①點A,D,E所在的直線和BC平行時;②點A,D,E所在的直線和BC相交時;然后分類討論,求出線段BD的長各是多少即可.
試題解析:(1)①當α=0°時,
∵Rt△ABC中,∠B=90°,
∴AC=,
∵點D、E分別是邊BC、AC的中點,
∴,BD=8÷2=4,
∴.
②如圖1,
,
當α=180°時,
可得AB∥DE,
∵,
∴
(2)如圖2,
,
當0°≤α<360°時,的大小沒有變化,
∵∠ECD=∠ACB,
∴∠ECA=∠DCB,
又∵,
∴△ECA∽△DCB,
∴.
(3)①如圖3,
,
∵AC=4,CD=4,CD⊥AD,
∴AD=
∵AD=BC,AB=DC,∠B=90°,
∴四邊形ABCD是矩形,
∴BD=AC=.
②如圖4,連接BD,過點D作AC的垂線交AC于點Q,過點B作AC的垂線交AC于點P,
,
∵AC=,CD=4,CD⊥AD,
∴AD=,
∵點D、E分別是邊BC、AC的中點,
∴DE==2,
∴AE=AD-DE=8-2=6,
由(2),可得
,
∴BD=.
綜上所述,BD的長為或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB=12,P為線段AB上的一個動點,分別以AP、PB為邊在AB的同側(cè)作菱形APCD和菱形PBFE,點P、C、E在一條直線上,∠DAP=60°.M、N分別是對角線AC、BE的中點.當點P在線段AB上移動時,點M、N之間的距離最短為______.(結(jié)果留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,用直尺和圓規(guī)作∠BAD的平分線AG交BC于點E,若BF=12,AB=10,則AE的長為( )
A.16 B.15 C.14 D.13
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.
(1)填空:∠AHC ∠ACG;(填“>”或“<”或“=”)
(2)線段AC,AG,AH什么關(guān)系?請說明理由;
(3)設(shè)AE=m,
①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數(shù)關(guān)系式;如果不變化,請求出定值.
②請直接寫出使△CGH是等腰三角形的m值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與函數(shù)y=(x>0)的圖象交于點A(m,2),B(2,n).過點A作AC平行于x軸交y軸于點C,在y軸負半軸上取一點D,使OD=OC,且△ACD的面積是6,連接BC.
(1)求m,k,n的值;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在陽光下,小東同學(xué)測得一根長為米的竹竿的影長為米.
同一時刻米的竹竿的影長為________米.
同一時刻小東在測量樹的高度時,發(fā)現(xiàn)樹的影子不全落在地面上,有一部分落在操場的第一級臺階上,測得落在第一級臺階上的影子長為米,第一級臺階的高為米,落在地面上的影子長為米,則樹的高度為________米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平面直角坐標系中,是直角三角形,,點的坐標分別為,
(1)求過點的直線的函數(shù)表達式
(2)在軸上找一點,連接,使得與相似(不包括全等),并求點的坐標;
(3)在⑵的條件下,如分別是和上的動點,連接,設(shè),問是否存在這樣的使得與相似,如果存在,請求出的值;如果不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列方程是關(guān)于x的一元二次方程的是( 。
A.ax2+bx+c=0B.
C.x(x+2)=x2﹣5D.3(x+1)2=2(x+1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)已知a,b,c均為實數(shù),且+|b+1|+(c+2)2=0,求關(guān)于x的方程ax2+bx+c=0的根.
(2)已知二次函數(shù)y=ax2+bx+c的圖象經(jīng)過A(﹣1,0),B(0,﹣3),C(3,0)三點,求該二次函數(shù)的解析式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com