【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點.
(1)在圖1中以格點為頂點畫一個面積為5的等腰直角三角形;
(2)在圖2中以格點為頂點畫一個三角形,使三角形三邊長分別為2、、 ;
(3)如圖3,點A、B、C是小正方形的頂點,求∠ABC的度數(shù).
科目:初中數(shù)學 來源: 題型:
【題目】已知AM∥CN,點B為平面內(nèi)一點,AB⊥BC于B.
(1)如圖1,直接寫出∠A和∠C之間的數(shù)量關系________;
(2)如圖2,過點B作BD⊥AM于點D,求證:∠ABD=∠C;
(3)如圖3,在(2)問的條件下,點E、F在DM上,連接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點O,AE⊥BD于點E,CF⊥BD于點F,連接AF,CE,若DE=BF,則下列結(jié)論:①CF=AE;②OE=OF;③四邊形ABCD是平行四邊形;④圖中共有四對全等三角形.其中正確結(jié)論的個數(shù)是( 。
A.4 B.3 C.2 D.1
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c與x軸相交于A、B兩點,與y軸相交于點C(0,3).且點A的坐標為(﹣1,0),點B的坐標為(3,0),點P是拋物線上第一象限內(nèi)的一個點.
(1)求拋物線的函數(shù)表達式;
(2)連PO、PB,如果把△POB沿OB翻轉(zhuǎn),所得四邊形POP′B恰為菱形,那么在拋物線的對稱軸上是否存在點Q,使△QAB與△POB相似?若存在求出點Q的坐標;若不存在,說明理由;
(3)若(2)中點Q存在,指出△QAB與△POB是否位似?若位似,請直接寫出其位似中心的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ABC+∠D=180°,AC平分∠BAD,CE⊥AB,CF⊥AD.試說明:
(1)△CBE≌△CDF;
(2)AB+DF=AF.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為4的正方形ABCD中,點G是BC邊上的任意一點(不同于端點B、C),連接AG,過B、D兩點作BE⊥AG,DF⊥AG,垂足分為E、F.
(1)求證:△ABE≌△DAF;
(2)若△ADF的面積為1,試求|BE﹣DF|的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,一次函數(shù)y=kx+3的圖象經(jīng)過點A(1,4).
(1)求這個一次函數(shù)的解析式;
(2)試判斷點B(-1,5),C(0,3),D(2,1)是否在這個一次函數(shù)的圖象上.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB、CD、EF都經(jīng)過點O,且AB⊥CD,OG平分∠BOE,如果∠EOG=∠AOE,求∠EOG,∠DOF和∠AOE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知DE∥BC,BE平分∠ABC,∠C=65°,∠ABC=50°.
(1)求∠BED的度數(shù);
(2)判斷BE與AC的位置關系,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com