【題目】某班師生組織植樹(shù)活動(dòng),上午8時(shí)從學(xué)校出發(fā),到植樹(shù)地點(diǎn)植樹(shù)后原路返校,如圖為師生離校路程s與時(shí)間t之間的圖象.請(qǐng)回答下列問(wèn)題:
(1)求師生何時(shí)回到學(xué)校?
(2)如果運(yùn)送樹(shù)苗的三輪車(chē)比師生遲半小時(shí)出發(fā),與師生同路勻速前進(jìn),早半小時(shí)到達(dá)植樹(shù)地點(diǎn),請(qǐng)?jiān)趫D中,畫(huà)出該三輪車(chē)運(yùn)送樹(shù)苗時(shí),離校路程s與時(shí)間t之間的圖象,并結(jié)合圖象直接寫(xiě)出三輪車(chē)追上師生時(shí),離學(xué)校的路程;
(3)如果師生騎自行車(chē)上午8時(shí)出發(fā),到植樹(shù)地點(diǎn)后,植樹(shù)需2小時(shí),要求14時(shí)前返回到學(xué)校,往返平均速度分別為每時(shí)10km、8km.現(xiàn)有A、B、C、D四個(gè)植樹(shù)點(diǎn)與學(xué)校的路程分別是13km、15km、17km、19km,試通過(guò)計(jì)算說(shuō)明哪幾個(gè)植樹(shù)點(diǎn)符合要求.
【答案】
(1)解:設(shè)師生返校時(shí)的函數(shù)解析式為s=kt+b,
如圖所示,
把(12,8)、(13,3)代入上式中得 ,
解此方程組得,
∴s=﹣5t+68,
當(dāng)s=0時(shí),t=13.6小時(shí),
即t=13時(shí)36分,
∴師生在13時(shí)36分回到學(xué)校
(2)解:該三輪車(chē)運(yùn)送樹(shù)苗時(shí),離校路程s與時(shí)間t之間的圖象如圖所示:
由圖象得,當(dāng)三輪車(chē)追上師生時(shí),離學(xué)校4km
(3)解:設(shè)符合學(xué)校要求的植樹(shù)點(diǎn)與學(xué)校的路程為x(km),
由題意得: <14,解得:x< ,
∵A、B、C、D四個(gè)植樹(shù)點(diǎn)與學(xué)校的路程分別是13km、15km、17km、19km,
∴13< ,15< ,17< ,19> ,
答:A、B、C植樹(shù)點(diǎn)符合學(xué)校的要求
【解析】(1)先根據(jù)師生返校時(shí)的路程與時(shí)間之間的關(guān)系列出函數(shù)解析式,然后看圖將兩組對(duì)應(yīng)s與t的值代入可得到一個(gè)二元一次方程組,解此方程組可得函數(shù)解析式.當(dāng)返回學(xué)校時(shí)就是s為0時(shí),t的值;(2)根據(jù)題意直接畫(huà)出該三輪車(chē)運(yùn)送樹(shù)苗時(shí),離校路程s與時(shí)間t之間的圖象,看圖可得三輪車(chē)追上師生時(shí),離學(xué)校的路程;(3)先設(shè)符合學(xué)校要求的植樹(shù)點(diǎn)與學(xué)校的路程為x(km),然后根據(jù)往返的平均速度、路程和時(shí)間得到一個(gè)不等式,解此不等式可得到x的取值范圍,再確定植樹(shù)點(diǎn)是否符合要求.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AD⊥BC,EF⊥BC,垂足分別為D、F,∠2+∠3=180°,試說(shuō)明:∠GDC=∠B.請(qǐng)補(bǔ)充說(shuō)明過(guò)程,并在括號(hào)內(nèi)填上相應(yīng)的理由.
解:∵AD⊥BC,EF⊥BC(已知)
∴∠ADB=∠EFB=90° ,
∴EF∥AD( ),
∴ +∠2=180°( ).
又∵∠2+∠3=180°(已知),
∴∠1=∠3( ),
∴AB∥ ( ),
∴∠GDC=∠B( ).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】圖①表示的是某綜合商場(chǎng)今年1~5月的商品各月銷(xiāo)售總額的情況,圖②表示的是商場(chǎng)服裝部各月銷(xiāo)售額占商場(chǎng)當(dāng)月銷(xiāo)售總額的百分比情況,觀(guān)察圖①、圖②,解答下列問(wèn)題:
(1)來(lái)自商場(chǎng)財(cái)務(wù)部的數(shù)據(jù)報(bào)告表明,商場(chǎng)1~5月的商品銷(xiāo)售總額一共是410萬(wàn)元,請(qǐng)你根據(jù)這一信息將圖①中的統(tǒng)計(jì)圖補(bǔ)充完整;
(2)商場(chǎng)服裝部5月份的銷(xiāo)售額是多少萬(wàn)元?
(3)小剛觀(guān)察圖②后認(rèn)為,5月份商場(chǎng)服裝部的銷(xiāo)售額比4月份減少了.你同意他的看法嗎?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)A是由2×4個(gè)整數(shù)組成的2行4列的數(shù)表,如果某一行(或某一列)各數(shù)之和為負(fù)數(shù),那么改變?cè)撔?/span>(或該列)中所有數(shù)的符號(hào),稱(chēng)為一次“操作”.
(1)如表1所示,如果經(jīng)過(guò)兩次“操作”,使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù),請(qǐng)寫(xiě)出每次“操作”后所得的數(shù)表;(寫(xiě)出一種方法即可)
1 | 2 | 3 | -7 |
-2 | -1 | 0 | 1 |
表1
(2)如表2所示,若經(jīng)過(guò)任意一次“操作”以后,便可使得到的數(shù)表每行的各數(shù)之和與每列的各數(shù)之和均為非負(fù)整數(shù),求整數(shù)a的值.
a | a2-1 | -a | -a2 |
2-a | 1-a2 | a-2 | a2 |
表2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BA1和CA1分別是△ABC的內(nèi)角平分線(xiàn)和外角平分線(xiàn),BA2是∠A1BD的平分線(xiàn),CA2是∠A1CD的平分線(xiàn),BA3是∠A2BD的平分線(xiàn),CA3是∠A2CD的平分線(xiàn).若∠A1=α,則∠A2019=________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人相約元旦登山,甲、乙兩人距地面的高度y(m)與登山時(shí)間x(min)之間的函數(shù)圖像如圖所示,根據(jù)圖像所提供的信息解答下列問(wèn)題:
(1)t= min.
(2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,
①則甲登山的的上升速度是 m/min;
②請(qǐng)求出甲登山過(guò)程中,距地面的高度y(m)與登山時(shí)間x(min)之間的函數(shù)關(guān)系式.
③當(dāng)甲、乙兩人距地面高度差為70m時(shí),求x的值(直接寫(xiě)出滿(mǎn)足條件的x值).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】媽媽要榨果汁,她有蘋(píng)果、橙子、雪梨三種水果,且其顆數(shù)比為 9:7:6, 她榨完果汁后,蘋(píng)果、橙子、雪梨的顆數(shù)比變?yōu)?/span> 6:3:4,已知媽媽榨果汁時(shí)沒(méi)有使用雪梨, 小明根據(jù)他的發(fā)現(xiàn)利用所學(xué)的數(shù)學(xué)知識(shí)推斷出媽媽榨果汁時(shí)只使用了橙子,媽媽告訴小明他的推斷是完全正確的。請(qǐng)你嘗試寫(xiě)出小明的推斷過(guò)程。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)小強(qiáng)用5個(gè)大小一樣的正方形制成如圖所示的拼接圖形(陰影部分),請(qǐng)你在圖中的拼接圖形上再接一個(gè)正方形,使新拼接成的圖形經(jīng)過(guò)折疊后能成為一個(gè)封閉的正方體盒子.注意:添加四個(gè)符合要求的正方形,并用陰影表示.
(2)先用三角板畫(huà)∠AOB=60°,∠BOC=45°,然后計(jì)算∠AOC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點(diǎn)分別為D、E、F,∠A=80°,點(diǎn)P為⊙O上任意一點(diǎn)(不與E、F重合),則∠EPF= .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com