如圖所示,四邊形OABC是矩形,點(diǎn)A,C的坐標(biāo)分別為(3,0),(0,l),點(diǎn)D是線段BC上的動(dòng)點(diǎn)(與端點(diǎn)B,C不重合),過(guò)點(diǎn)D作直線交折線OAB于點(diǎn)E.
(1)請(qǐng)寫(xiě)出直線中b的取值范圍;
(2)若△ODE的面積為S,求S與b的函數(shù)關(guān)系式;
(3)當(dāng)點(diǎn)E在線段OA上時(shí),若矩形OABC關(guān)于直線DE的對(duì)稱圖形為矩形O1A1B1C1(其中O、A,B、C的對(duì)應(yīng)點(diǎn)分別為O1、A1、B1、C1),請(qǐng)計(jì)算矩形O1A1B1C1與矩形OABC的重疊部分的面積為多少?(直接寫(xiě)出答案)

【答案】分析:(1)尋找兩個(gè)極限位置,①點(diǎn)D與點(diǎn)C重合,②點(diǎn)D與點(diǎn)B重合,可得出b的取值范圍.
(2)要表示出△ODE的面積,要分兩種情況討論,①如果點(diǎn)E在OA邊上,只需求出這個(gè)三角形的底邊OE長(zhǎng)(E點(diǎn)橫坐標(biāo))和高(D點(diǎn)縱坐標(biāo)),代入三角形面積公式即可;②如果點(diǎn)E在AB邊上,這時(shí)△ODE的面積可用長(zhǎng)方形OABC的面積減去△OCD、△OAE、△BDE的面積;
(3)重疊部分是一個(gè)平行四邊形,由于這個(gè)平行四邊形上下邊上的高不變,因此決定重疊部分面積是否變化的因素就是看這個(gè)平行四邊形落在OA邊上的線段長(zhǎng)度,求出計(jì)算即可.
解答:解:(1)當(dāng)點(diǎn)D與點(diǎn)C重合時(shí),直線DE的解析式為y=-x+1,此時(shí)b=1;
當(dāng)點(diǎn)D與點(diǎn)B重合時(shí),直線DE的解析式為y=-x+,此時(shí)b=
故可得b的取值范圍為:1<b<;
(2)若直線經(jīng)過(guò)點(diǎn)A(3,0)時(shí),則b=
若直線經(jīng)過(guò)點(diǎn)B(3,1)時(shí),則b=,
若直線經(jīng)過(guò)點(diǎn)C(0,1)時(shí),則b=1,
①若直線與折線OAB的交點(diǎn)在OA上時(shí),即1<b≤,如圖1:

此時(shí)E(2b,0),
則S=OE•CO=×2b×1=b;
②若直線與折線OAB的交點(diǎn)在BA上時(shí),即<b<,如圖2:

此時(shí)E(3,b-),D(2b-2,1),
則S=S-(S△OCD+S△OAE+S△DBE),
=3-[(2b-2)×1+×(5-2b)•(-b)+×3(b-)]
=b-b2
故S=
(3)如圖3,

設(shè)O1A1與CB相交于點(diǎn)M,OA與C1B1相交于點(diǎn)N,則矩形O1A1B1C1與矩形OABC的重疊部分的面積即為四邊形DNEM的面積,
由題意知,DM∥NE,DN∥ME,
則四邊形DNEM為平行四邊形,
根據(jù)軸對(duì)稱知,∠MED=∠NED,
又∵∠MDE=∠NED,
∴∠MED=∠MDE,
∴MD=ME,
∴平行四邊形DNEM為菱形,
過(guò)點(diǎn)D作DH⊥OA,垂足為H,設(shè)菱形DNEM的邊長(zhǎng)為a,
由題意知,D(2b-2,1),E(2b,0),
∴DH=1,HE=2b-(2b-2)=2,
∴HN=HE-NE=2-a,
則在Rt△DHN中,由勾股定理知:a2=(2-a)2+12,
∴a=
∴S四邊形DNEM=NE•DH=
即矩形OA1B1C1與矩形OABC的重疊部分的面積為
點(diǎn)評(píng):本題屬于一次函數(shù)與矩形的結(jié)合題,涉及的知識(shí)點(diǎn)較多,是個(gè)不可多得的好題,有利于培養(yǎng)學(xué)生的思維能力,但難度較大,具有明顯的區(qū)分度.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖所示,四邊形OABC為正方形,邊長(zhǎng)為6,點(diǎn)A,C分別在x軸,y軸的正半軸上,點(diǎn)D在OA上,且D的坐標(biāo)為(2,0),P是OB上的一動(dòng)點(diǎn),試求PD+PA和的最小值是(  )
A、2
10
B、
10
C、4
D、6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為(3,0),(0,1),點(diǎn)D是線段BC上的動(dòng)點(diǎn)(與端點(diǎn)B、C不重合),過(guò)點(diǎn)D作直線y=-
12
x
+b交折線OAB于點(diǎn)E.記△ODE的面積為S.
(1)當(dāng)點(diǎn)E在線段OA上時(shí),求S與b的函數(shù)關(guān)系式;并求出b的范圍;
(2)當(dāng)點(diǎn)E在線段AB上時(shí),求S與b的函數(shù)關(guān)系式;并求出b的范圍;
(3)當(dāng)點(diǎn)E在線段OA上時(shí),若矩形OABC關(guān)于直線DE的對(duì)稱圖形為四邊形OA1B1C1,試探究OA1B1C1與矩形OABC的重疊部分的面積是否發(fā)生變化?若不變,求出該重疊部分的面積;若改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•吳中區(qū)一模)如圖所示,四邊形OABC是矩形,點(diǎn)A、C的坐標(biāo)分別為(6,0),(0,2),點(diǎn)D是線段BC上的動(dòng)點(diǎn)(與端點(diǎn)B、C不重合),過(guò)點(diǎn)D作直線y=-
12
x
+b交折線OAB于點(diǎn)E.
(1)記△ODE的面積為S,求S與b的函數(shù)關(guān)系式;
(2)當(dāng)點(diǎn)E在線段OA上時(shí),若矩形OABC關(guān)于直線DE的對(duì)稱圖形為四邊形O1A1B1C1,試探究四邊形O1A1B1C1與矩形OABC的重疊部分的面積是否發(fā)生變化?若不變,求出該重疊部分的面積;若改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

小明參加汽車(chē)駕駛培訓(xùn),在實(shí)際操作考試時(shí),被要求進(jìn)行啟動(dòng)加速、勻速運(yùn)行、制動(dòng)減速三個(gè)連貫過(guò)程,在加速和減速運(yùn)動(dòng)過(guò)程中,路程和速度均滿足關(guān)系s=v0t+
12
at2
,v0為加速或減速的起始速度,加速時(shí)a為正,減速時(shí)a為負(fù),勻速時(shí)a=0,加速或減速t秒后的瞬時(shí)速度v=v0+at,小明在操作中瞬時(shí)速度v與時(shí)間t的關(guān)系如圖所示,其中OA為勻加速,AB為勻速,BC為勻減速.
(1)若減速過(guò)程與加速過(guò)程完全相反,即BC與OA關(guān)于AB的中垂線成軸對(duì)稱,求BC的解析式.
(2)當(dāng)0≤t≤300時(shí),求汽車(chē)行駛的路程s與時(shí)間t的函數(shù)關(guān)系式.
(3)汽車(chē)行駛t秒后,
①若經(jīng)途中D點(diǎn),過(guò)點(diǎn)D作垂線交AB于點(diǎn)E,試證明汽車(chē)行駛的路程恰等于四邊形OAED的面積.
②若汽車(chē)行駛至M點(diǎn),過(guò)點(diǎn)M做垂線交BC于點(diǎn)N,汽車(chē)行駛的路程是否等于五邊形OABNM的面積呢?試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四邊形ABCD與A′B′C′D′以0為位似中心,位似比為1:2.則點(diǎn)A的對(duì)應(yīng)點(diǎn)是點(diǎn)
A′
A′
.點(diǎn)B的對(duì)應(yīng)點(diǎn)是點(diǎn)
B′
B′
.線段AB的對(duì)應(yīng)線段是線段
A′B′
A′B′
,∠DAB的對(duì)應(yīng)角是
∠D′A′B′
∠D′A′B′
,線段AD與A′D′的比為
1:2
1:2
.它們關(guān)于點(diǎn)
O
O
位似.△OAB與
△OA′B′
△OA′B′
相似,相似比為
1:2
1:2

查看答案和解析>>

同步練習(xí)冊(cè)答案