【題目】如圖,點D、O在△ABC的邊AC上,以CD為直徑的⊙O與邊AB相切于點E,連結(jié)DE、OB,且DE∥OB.
(1)求證:BC是⊙O的切線.
(2)設(shè)OB與⊙O交于點F,連結(jié)EF,若AD=OD,DE=4,求弦EF的長.
【答案】(1)見解析;(2)4
【解析】
(1)連接OE,根據(jù)切線的性質(zhì)得到OE⊥AB,根據(jù)平行線的性質(zhì)得到∠BOC=∠EDO,∠BOE=∠DEO,根據(jù)全等三角形的性質(zhì)得到∠OCB=∠OEB=90°,于是得到BC是⊙O的切線;
(2)根據(jù)直角三角形的性質(zhì)得到OD=DE=4,推出四邊形DOFE是平行四邊形,得到EF=OD=4.
(1)證明:連接OE,
∵以CD為直徑的⊙O與邊AB相切于點E,
∴OE⊥AB,
∵DE∥OB,
∴∠BOC=∠EDO,∠BOE=∠DEO,
∵OE=OD,
∴∠EDO=∠DEO,
∴∠BOC=∠BOE,
∵OB=OB,OC=OE,
∴△OCB≌△OEB(SAS),
∴∠OCB=∠OEB=90°,
∴BC是⊙O的切線;
(2)解:∵∠AEO=90°,AD=OD,
∴ED=AO=OD,
∴OD=DE=4,
∵DE∥OF,DE=OD=OF,
∴四邊形DOFE是平行四邊形,
∴EF=OD=4,
∴弦EF的長為4.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,AC是半圓內(nèi)一條弦,點D是的中點,DB交AC于點G,過點A作半圓的切線與BD的延長線交于點M,連接AD.點E是AB上的一動點,DE與AC相交于點F.
(1)求證:MD=GD;
(2)填空:①當∠DEA= 時,AF=FG;
②若∠ABD=30°,當∠DEA= 時,四邊形DEBC是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我國古代重要建筑的室內(nèi)上方,通常會在正中部位做出向上凸起的穹窿狀裝飾,稱為藻井.北京故宮博物院內(nèi)的太和殿上方即有藻井(圖1),全稱為龍鳳角蟬云龍隨瓣枋套方八角渾金蟠龍藻井.它展示出精美的裝飾空間和造型藝術(shù).從分層構(gòu)造上來看,太和殿藻井由三層組成:最下層為方井,中層為八角井,上層為圓井.圖2是由圖1抽象出的平面圖形.若最下層方井邊長為1,在圖2中隨機取一點,則此點取自圓內(nèi)的概率為( )
圖1 圖2
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 小明和同學(xué)們對居住在“幸福小區(qū)”的部分居民每周戶外鍛煉天數(shù)情況進行了調(diào)查,并將調(diào)查的居民每周戶外鍛煉的天數(shù)按四個類別進行了統(tǒng)計.四個類別分別是A(每周鍛煉少于5天),B(每周鍛煉5天),C(每周鍛煉6天),D(每周鍛煉7天),小明和同學(xué)們將統(tǒng)計結(jié)果繪制成了如圖兩幅不完整的統(tǒng)計圖.
(1)調(diào)查的總?cè)藬?shù)為 人;
(2)扇形統(tǒng)計圖中C部分所對應(yīng)的圓心角的度數(shù)為 °;
(3)求類別B的人數(shù),并補全條形統(tǒng)計圖;
(4)如果“幸福小區(qū)”共有1200名居民,請你估計該小區(qū)每周鍛煉7天的人數(shù)有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),對稱軸是x=1,現(xiàn)有結(jié)論:①abc>0 ②9a﹣3b+c=0 ③b=﹣2a④(﹣1)b+c<0,其中正確的有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某海監(jiān)船向正西方向航行,在A處望見一艘正在作業(yè)的漁船D在南偏西45°方向,海監(jiān)船航行到B處時,望見漁船D在南偏東45°方向,又航行半小時到達C處望見漁船D在南偏東62°方向,若海監(jiān)船的速度為40海里/小時,求A、B之間的距離.(精確到0.1海里,參考數(shù)據(jù):sin62°≈0.88,cos62°≈0.47,tan62°≈1.88)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的直徑AB=10,弦AC=6,∠BAC的平分線交⊙O于點D,過點D作DE⊥AC交AC的延長線于點E.
(1)求證:DE是⊙ O的切線.
(2)求AD的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com