【題目】如圖,已知∠AOB=60°,點P在邊OA上,OP=12,點M,N在邊OB上,PM=PN,若MN=2,則OM=____.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,直線AB的解析式為y=﹣x+4,拋物線y=﹣+bx+c與y軸交于點A,與x軸交于點C(6,0),點P是拋物線上一動點,設(shè)點P的橫坐標(biāo)為m.
(1)求拋物線的解析式;
(2)當(dāng)點P在第一象限內(nèi)時,求△ABP面積的最大值,并求此時點P的坐標(biāo);
(3)如圖②,當(dāng)點P在y軸右側(cè)時,過點A作直線l∥x軸,過點P作PH⊥l于點H,將△APH繞點A順時針旋轉(zhuǎn),當(dāng)點H的對應(yīng)點H′恰好落在直線AB上時,點P的對應(yīng)點P′恰好落在坐標(biāo)軸上,請直接寫出點P的橫坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O內(nèi)接三角形,AB是⊙O的直徑,C是弧AF的中點,弦BC,AF相交于點E,在BC延長線上取點D,使得AD=AE.
(1)求證:AD是⊙O切線;
(2)若∠OEB=45°,求sin∠ABD的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】 如圖,正方形ABCD的邊長為6,點E,點F分別在邊AB,AD上,AE=DF=2,連接DE,CF交于點G.連接AC與DE交于點M,延長CB至點K,使BK=3,連接GK交AB于點N.
(1)求證:CF⊥DE;
(2)求△AMD的面積;
(3)請直接寫出線段GN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點D、O在△ABC的邊AC上,以CD為直徑的⊙O與邊AB相切于點E,連結(jié)DE、OB,且DE∥OB.
(1)求證:BC是⊙O的切線.
(2)設(shè)OB與⊙O交于點F,連結(jié)EF,若AD=OD,DE=4,求弦EF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,P'是邊AB上一點,四邊形P'Q'M'N'是正方形,點Q',在邊BC上,點N'在△ABC內(nèi).連接BN',并延長交AC于點N,NM⊥BC于點M,NP⊥MN交AB于點P,PQ⊥BC于點Q.
(1)求證:四邊形PQMN為正方形;
(2)若∠A=90°,AC=1.5m,△ABC的面積=1.5m2.求PN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與軸分別交于兩點,與反比例函數(shù)的圖像交于點,點C在反比例函數(shù)的圖像上,過點C作軸于點D,連接,已知.
(1),點A的坐標(biāo)為________________.
(2)點在線段上,連接,且,求點C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為1,順次連接正方形ABCD四邊的中點得到第一個正方形A1B1C1D1,由順次連接正方形A1B1C1D1四邊的中點得到第二個正方形A2B2C2D2…,以此類推,則第六個正方形A6B6C6D6周長是( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將矩形紙片ABCD折疊,使點D與點B重合,點C落在C1處,折痕為EF,若AB=4,BC=8,則線段EF的長度為__.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com