【題目】如圖,為某景區(qū)五個(gè)景點(diǎn)A、BC、DE的平面示意圖,B、AC的正東方向,DC的正北方向,DE均在B的北偏西18°方向上,EA的西北方向上,C、D相距1000米,EBD的中點(diǎn)處,求景點(diǎn)B、A之間的距離.(結(jié)果保留整數(shù))

(參考數(shù)據(jù):sin18°≈0.3;cos18°≈0.9tan18°≈0.3;sin72°≈0.9;cos72°≈0.3;tan72°≈3.11.4

【答案】景點(diǎn)BA之間的距離為350米.

【解析】

EEFABF,在Rt△BCD中求出BD的長,進(jìn)而求出BE的長,在Rt△AEF中,求得EF,在Rt△BEF中,求得BF,于是得到結(jié)論.

由題意得,C90°,∠D=∠BEF18°,CAE45°,

EEFABF,

Rt△BCD中,BD=米,

EBD的中點(diǎn)處,

BE=米.

Rt△AEF中,EFAFBEcos18°×0.9500米,

Rt△BEF中,BFEFtan18°150米,

ABAFBF500150350(米).

答:景點(diǎn)BA之間的距離為350米.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線ykx+1x軸、y軸分別相交于點(diǎn)A、B,將AOB繞點(diǎn)A順時(shí)針旋轉(zhuǎn),使AO落在AB上,得到ACD,將ACD沿射線BA平移,當(dāng)點(diǎn)D到達(dá)x軸時(shí)運(yùn)動停止.設(shè)平移距離為m,平移后的圖形在x軸下方部分的面積為S,S關(guān)于m的函數(shù)圖象如圖2所示(其中0m≤22ma時(shí),函數(shù)的解析式不同)

1)填空:a   k   

2)求S關(guān)于m的解析式,并寫出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸相交于點(diǎn),與反比例函數(shù)的圖象相交于點(diǎn),

1)求一次函數(shù)和反比例函數(shù)的解析式;

2)根據(jù)圖象,直接寫出時(shí),的取值范圍;

3)在軸上是否存在點(diǎn),使為等腰三角形,如果存在,請求點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:拋物線軸交于,兩點(diǎn),與軸交于點(diǎn),點(diǎn)為頂點(diǎn),連接,,拋物線的對稱軸與軸交與點(diǎn)

1)求拋物線解析式及點(diǎn)的坐標(biāo);

2G是拋物線上,之間的一點(diǎn),且,求出點(diǎn)坐標(biāo);

3)在拋物線上之間是否存在一點(diǎn),過點(diǎn),交直線于點(diǎn),使以,為頂點(diǎn)的三角形與相似?若存在,求出滿足條件的點(diǎn)的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次海上救援中,兩艘專業(yè)救助船同時(shí)收到某事故漁船的求救訊息,已知此時(shí)救助船的正北方向,事故漁船在救助船的北偏西30°方向上,在救助船的西南方向上,且事故漁船與救助船相距120海里.

1)求收到求救訊息時(shí)事故漁船與救助船之間的距離;

2)若救助船A,分別以40海里/小時(shí)、30海里/小時(shí)的速度同時(shí)出發(fā),勻速直線前往事故漁船處搜救,試通過計(jì)算判斷哪艘船先到達(dá).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019218日,《感動中國2018年度人物頒獎(jiǎng)盛典》在央視綜合頻道播出,其中鄉(xiāng)村教師張玉滾的事跡令人非常感動某校團(tuán)委組織“支援鄉(xiāng)村教育,幫助教師張玉滾”的捐款活動,以下為九年級(1)班捐款情況:

捐款金額(元)

5

10

20

50

人數(shù)(人)

12

13

16

11

則這個(gè)班學(xué)生捐款金額的中位數(shù)和眾數(shù)分別為(

A.15,50B.2020C.10,20D.20,50

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形 ABCD 中,AB=8,BC=6,將矩形 ABCD 繞點(diǎn) A 逆時(shí)針旋轉(zhuǎn)得到矩形 AEFG,AE,F(xiàn)G 分別交射線CD 于點(diǎn) PH,連結(jié) AH,若 P CH 的中點(diǎn),則APH 的周長為(

A. 15 B. 18 C. 20 D. 24

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)yax2+bx+c的圖象經(jīng)過點(diǎn)A(10)、點(diǎn)B(3,0)、點(diǎn)C(4,y1),若點(diǎn)D(x2,y2)是拋物線上任意一點(diǎn),有下列結(jié)論:

①二次函數(shù)yax2+bx+c的最小值為﹣4a;

②若﹣1≤x2≤4,則0≤y2≤5a;

③若y2y1,則x24

④一元二次方程cx2+bx+a0的兩個(gè)根為﹣1

其中正確結(jié)論的是_____(填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(滿分8分)如圖,某教學(xué)樓AB的后面有一建筑物CD,當(dāng)光線與地面的夾角是22°時(shí),教學(xué)樓在建筑物的墻上留下高2m的影子CE;而當(dāng)光線與地面的夾角是45°時(shí),教學(xué)樓頂A在地面上的影子F與墻角C的距離為18m (B、F、C在一條直線上).

求教學(xué)樓AB的高度.(結(jié)果保留整數(shù))

參考數(shù)據(jù)sin22°0.37cos22°0.93,tan22°0.40 .

查看答案和解析>>

同步練習(xí)冊答案