【題目】附加題:(1)已知:如圖①,在和中,OA=OB,OC=OD,,求證:①AC=BD;②.
(2)如圖②,在和中,若OA=OB,OC=OD,,則AC與BD間的等量關(guān)系式為 ;的大小為 .
【答案】(1)見解析;(2),
【解析】
(1)①求出∠AOC=∠BOD,證出△AOC≌△BOD,根據(jù)全等三角形的性質(zhì)推出即可;
②根據(jù)△AOC≌△BOD推出∠OAC=∠OBD,再利用角的和差即可求出∠APB的度數(shù);
(2)求出∠AOC=∠BOD,證出△AOC≌△BOD,根據(jù)全等三角形的性質(zhì)推出即可;根據(jù)△AOC≌△BOD推出∠OAC=∠OBD,再利用角的和差即可求出求出∠APB.
(1)證明:
①∵∠AOB=∠COD=60°,
∴∠AOB+∠BOC=∠COD+∠BOC,
∴∠AOC=∠BOD,
又∵OA=OB,OC=OD,
∴△AOC≌△BOD(SAS),
∴AC=BD;
②由①得:∵△AOC≌△BOD,
∴∠OAC=∠OBD,
∴∠OAC+∠AOB=∠OBD+∠APB,
∴∠OAC+60°=∠OBD+∠APB,
∴∠APB=60°;
(2)∵∠AOB=∠COD,
∴∠AOC=∠BOD,
又∵OA=OB,OC=OD,
∴△AOC≌△BOD(SAS),
∴AC=BD;
∵△AOC≌△BOD,
∴∠OAC=∠OBD,
∴∠OAC+∠AOB=∠OBD+∠APB,
∴∠OAC+=∠OBD+∠APB,
∴∠APB=;
故答案為:,.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲開車從距離市千米的市出發(fā)去市,乙從同一路線上的市出發(fā)也去往市,二人離市的距離與行駛時間的函數(shù)關(guān)系如圖所示(代表距離,代表時間).
(1)市離市的距離是 千米;
(2)甲的速度是 千米/時,乙的速度是 千米/時;
(3)甲比乙早幾小時到達(dá)市?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,分別以的直角邊和斜邊為邊向外作正方形和正方形,連結(jié)、、.給出下列結(jié)論:
①;
②
③
④其中正確的是( )
A.②③④B.①②③C.①②④D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù) y=ax2+bx+c(a≠0)的圖象如圖,有下列 5 個結(jié)論:①4a+2b+c>0;②abc<0;③b<a+c;④3b>2c;⑤a+b<m(am+b),(m≠1 的實(shí)數(shù));其中正確結(jié)論的個數(shù)為( )
A. 2 個 B. 3 個 C. 4 個 D. 5 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)問題發(fā)現(xiàn):
如圖①,△ABC 和△AED 都是等腰直角三角形,∠BAC=∠EAD=90°,點(diǎn) B 在線段AE 上,點(diǎn) C 在線段AD 上,請直接寫出線段 BE 與線段 CD 的數(shù)量與位置關(guān)系是關(guān)系: ;
(2)操作探究:
如圖②,將圖①中的△ABC 繞點(diǎn) A 順時針旋轉(zhuǎn)α(0°<α<360°),(1)小題中線段 BE 與線段 CD 的關(guān)系是否成立?如果不成立,說明理由,如果成立,請你結(jié)合圖②給出的情形進(jìn)行證明;
(3)解決問題:
將圖①中的△ABC 繞點(diǎn) A 順時針旋轉(zhuǎn)α(0°<α<360°),若 DE=2AC,在旋轉(zhuǎn)的過程中,當(dāng)以 A、B、C、D 四點(diǎn)為頂點(diǎn)的四邊形是平行四邊形時,在備用圖中畫出其中的一個情形,并寫出此時旋轉(zhuǎn)角α的度數(shù)是 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在三角形ABC中,BC=14,AC=9,AB=13,它的內(nèi)切圓分別和BC、AC、AB切于點(diǎn)D、E、F,那么AF、BD、CE的長分別為( 。
A. AF=4,BD=9,CE=5 B. AF=4,BD=5,CE=9
C. AF=5,BD=4,CE=9 D. AF=9,BD=4,CE=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠C=90°,AC=3,BC=4,AB=5.如圖,⊙O是△ABC的內(nèi)切圓,與三邊分別相切于點(diǎn)E、F、G.
(1)求證:內(nèi)切圓的半徑r=1;
(2)求tan∠OAG的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著科技進(jìn)步,無人機(jī)的應(yīng)用越來越廣,如圖1,在某一時刻,無人機(jī)上的探測器顯示,從無人機(jī)A處看一棟樓頂部B點(diǎn)的仰角和看與頂部B在同一鉛垂線上高樓的底部C的俯角.
(1)如果上述仰角與俯角分別為30°與60°,且該樓的高度為30米,求該時刻無人機(jī)的豎直高度CD;
(2)如圖2,如果上述仰角與俯角分別為α與β,且該樓的高度為m米.求用α、β、m表示該時刻無人機(jī)的豎直高度CD.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com