【題目】如圖,已知AD平分AB=AC,則此圖中全等三角形有(

A.2B.3C.4D.5

【答案】C

【解析】

根據(jù)SAS推出△ABD≌△ACD,求出∠B=C,BE=CF,根據(jù)全等三角形的判定推出△BDE≌△CDF,△AED≌△AFD,△AFB≌△AEC即可.

AD平分∠BAC,∴∠BAD=CAD,

AB=AC,AD=AD,

∴△ABD≌△ACDSAS),

BD=CD,∠B=C,

∵∠EDB=FDC,∴△BED≌△CFDASA),

BE=FC

AB=AC,∴AE=AF,

∵∠BAD=CADAD=AD,∴△AED≌△AFD

AB=AC,∠BAF=CAE,AF=AE,

∴△AFB≌△AEC

即圖中的全等三角形有4.

故答案為:C.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一條東西走向的筆直公路,點AB表示公路北側間隔150米的兩棵樹所在的位置,點C表示電視塔所在的位置.小王在公路PQ南側直線行走,當他到達點P的位置時,觀察樹A恰好擋住電視塔,即點P、A、C在一條直線上,當他繼續(xù)走180米到達點Q的位置時,以同樣方法觀察電視塔,觀察樹B也恰好擋住電視塔.假設公路兩側ABPQ,且公路的寬為60米,求電視塔C到公路南側PQ的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,D、E、F分別為BC、AD、BE的中點,若△BFD的面積為6,則 △ABC的面積等于_____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,先對折矩形得折痕MN,再折紙使折線過點B,且使得AMN上,這時折線EBBC所成的角為(

A.30°B.45°C.60°D.75°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們規(guī)定:將一個平面圖形分成面積相等的兩部分的直線叫做該平面圖形的面線,面線被這個平面圖形截得的線段叫做該圖形的面徑(例如圓的直徑就是它的面徑).已知等邊三角形的邊長為4,則它的面徑長x的取值范圍是 _.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平行四邊形ABCD中,E為邊上一點,連結AE并延長交直線DC于F,且CE=CF.

(1)如圖1,求證:AF是∠BAD的平分線;

(2)如圖2,若∠ABC=90°,點G是線段EF上一點,連接DG、BD、CG,若∠BDG=45°,求證:CG=EF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】附加題:(1)已知:如圖①,在中,OA=OB,OC=OD,求證:①AC=BD;②

2)如圖②,在中,若OA=OBOC=OD,,則ACBD間的等量關系式為 ;的大小為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了慶祝新中國成立70周年,某校組織八年級全體學生參加“恰同學少年,憶崢嶸歲月”新中國成立70周年知識競賽活動.將隨機抽取的部分學生成績進行整理后分成5組,5060分()的小組稱為“學童”組,6070()的小組稱為“秀才”組,7080()的小組稱為“舉人”組,8090()的小組稱為“進士”組,90100()的小組稱為“翰林”組,并繪制了不完整的頻數(shù)分布直方圖如下,請結合提供的信息解答下列問題:

1)若“翰林”組成績的頻率是12.5%,請補全頻數(shù)分布直方圖;

2)在此次比賽中,抽取學生的成績的中位數(shù)在 組;

3)學校決定對成績在70100()的學生進行獎勵,若八年級共有336名學生,請通過計算說明,大約有多少名學生獲獎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張師傅駕車從甲地去乙地,途中在加油站加了一次油,加油時,車載電腦顯示還能行駛50千米.假設加油前、后汽車都以100千米/小時的速度勻速行駛,已知油箱中剩余油量y(升)與行駛時間t(小時)之間的關系如圖所示.

(1)求張師傅加油前油箱剩余油量y(升)與行駛時間t(小時)之間的關系式;

(2)求出a的值;

(3)求張師傅途中加油多少升?

查看答案和解析>>

同步練習冊答案