在矩形ABCD中,AB=2,AD=3,P是BC上的任意一點(diǎn)(P與B、C不重合),過點(diǎn)P作AP⊥PE,垂足為P,PE交CD于點(diǎn)E.
(1)連接AE,當(dāng)△APE與△ADE全等時(shí),求BP的長(zhǎng);
(2)若設(shè)BP為x,CE為y,試確定y與x的函數(shù)關(guān)系式.當(dāng)x取何值時(shí),y的值最大?最大值是多少?
(3)若PE∥BD,試求出此時(shí)BP的長(zhǎng).
|
(1)∵△APE≌△ADE
∴AP=AD=3
在Rt△ABP中,BP=
(2) ∵AP⊥PE
∴Rt△ABP∽R(shí)t△PCE
∴ 即
∴
∴當(dāng)
(3)設(shè)BP=x,
∵PE∥BD
∴△CPE∽△CBD
∴
即
化簡(jiǎn)得
解得
∴當(dāng)BP= 時(shí), PE∥BD.
【解析】(1)根據(jù)全等三角形的對(duì)應(yīng)邊相等知AP=AD=3;然后在Rt△ABP中利用勾股定理可以求得BP的長(zhǎng)度;
(2)根據(jù)相似三角形Rt△ABP∽R(shí)t△PCE的對(duì)應(yīng)邊成比例列出關(guān)于x、y的方程,通過二次函數(shù)的最值的求法來求y的最大值;
(3)如圖,連接BD.利用(2)中的函數(shù)關(guān)系式設(shè)BP=x,則CE=-x2+x,然后根據(jù)相似三角形△CPE∽△CBD的對(duì)應(yīng)邊成比例列出關(guān)于x的一元二次方程,通過解該方程即可求得此時(shí)BP的長(zhǎng)度.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com