【題目】如圖,在中,,,點的坐標(biāo)為,點的坐標(biāo)為,求點的坐標(biāo).
【答案】(-8,3).
【解析】
過A和B分別作AD⊥OC于D,BE⊥OC于E,利用已知條件可證明△ADC≌△CEB,再由全等三角形的性質(zhì)和已知數(shù)據(jù)即可求出A點的坐標(biāo).
解:過A和B分別作AD⊥OC于D,BE⊥OC于E,
∵∠ACB=90°,
∴∠ACD+∠CAD=90°,∠ACD+∠BCE=90°,
∴∠CAD=∠BCE,
在△ADC和△CEB中,
,
∴△ADC≌△CEB(AAS),
∴DC=BE,AD=CE,
∵點C的坐標(biāo)為(-2,0),點B的坐標(biāo)為(1,6),
∴OC=2,AD=CE=1-(-2)=3,CD =BE=6,
∴OD=CD+OC=6+2=8,
∴則A點的坐標(biāo)是(-8,3).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道整數(shù)除以整數(shù)(其中),可以用豎式計算,例如計算可以用整式除法如圖:,所以.
類比此方法,多項式除以多項式一般也可以用豎式計算,步驟如下:
①把被除式,除式按某個字母作降冪排列,并把所缺的項用零補齊;
②用被除式的第一項除以除式第一項,得到商式的第一項;
③用商式的第一項去乘除式,把積寫在被除式下面(同類對齊),消去相等項;
④把減得的差當(dāng)作新的被除式,再按照上面的方法繼續(xù)演算,直到余式為零或余式的次數(shù)低于除式的次數(shù)時為止,被除式=除式×商式+余式,若余式為零,說明這個多項式能被另一個多項式整除.
例如:計算.
可用整式除法如圖:
所以除以
商式為,余式為0
根據(jù)閱讀材料,請回答下列問題:
(1) .
(2),商式為 ,余式為 .
(3)若關(guān)于的多項式能被三項式整除,且均為整數(shù),求滿足以上條件的的值及商式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某種型號油電混合動力汽車,從A地到B地燃油行駛純?nèi)加唾M用76元,從A地到B地用電行駛純電費用26元,已知每行駛1千米,純?nèi)加唾M用比純用電費用多0.5元.
(1)求每行駛1千米純用電的費用;
(2)若要使從A地到B地油電混合行駛所需的油、電費用合計不超過39元,則至少用電行駛多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,D為等邊三角形ABC內(nèi)的一點,DA=5,DB=4,DC=3,將線段AD以點A為旋轉(zhuǎn)中心逆時針旋轉(zhuǎn)60°得到線段AD′,下列結(jié)論:①點D與點D′的距離為5;②∠ADC=150°;③△ACD′可以由△ABD繞點A逆時針旋轉(zhuǎn)60°得到;④點D到CD′的距離為3;⑤S四邊形ADCD′ =6+.其中正確的有( 。
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(模型建立)
(1)如圖1,等腰Rt△ABC中,∠ACB=90°,CB=CA,直線ED經(jīng)過點C,過點A作AD⊥ED于點D,過點B作BE⊥ED于點E,求證:△BEC≌△CDA;
(模型應(yīng)用)
(2)如圖2,已知直線11:y=2x+3與x軸交于點A、與y軸交于點B,將直線11繞點A逆時針旋轉(zhuǎn)45°至直線12;求直線12的函數(shù)表達式;
(3)如圖3,平面直角坐標(biāo)系內(nèi)有一點B(3,-4),過點B作BA⊥x軸于點A、BC⊥y軸于點C,點P是線段AB上的動點,點D是直線y=-2x+1上的動點且在第四象限內(nèi).試探究△CPD能否成為等腰直角三角形?若能,求出點D的坐標(biāo),若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,內(nèi)接于,且,是的直徑,與交于點,在的延長線上,且.
試判斷與的位置關(guān)系,并說明理由;
若,,求陰影的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將五個邊長都為2cm的正方形按如圖所示擺放,點A、B、C、D分別是四個正方形的中心,則圖中四塊陰影面積的和為( )
A.2cm2 B.4cm2 C.6cm2 D.8cm2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點P從△ABC的頂點B出發(fā),沿B→C→A勻速運動到點A,圖2是點P運動時,線段BP的長度y隨時間x變化的關(guān)系圖象,其中M為曲線部分的最低點,則△ABC的面積是( )
A. 10B. 12C. 20D. 24
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸是直線x=1,下列結(jié)論:①ab<0;②a+b+c<0;③b2>4ac;④3a+c<0.其中正確的是( 。
A. ①④ B. ②③④ C. ①②③④ D. ①②③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com