【題目】(本小題滿分12分)如圖,在平面直角坐標(biāo)系xOy中,拋物線()與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),經(jīng)過(guò)點(diǎn)A的直線l:與y軸負(fù)半軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)為D,且CD=4AC.
(1)直接寫(xiě)出點(diǎn)A的坐標(biāo),并求直線l的函數(shù)表達(dá)式(其中k,b用含a的式子表示);
(2)點(diǎn)E是直線l上方的拋物線上的動(dòng)點(diǎn),若△ACE的面積的最大值為,求a的值;
(3)設(shè)P是拋物線的對(duì)稱(chēng)軸上的一點(diǎn),點(diǎn)Q在拋物線上,以點(diǎn)A,D,P,Q為頂點(diǎn)的四邊形能否成為矩形?若能,求出點(diǎn)P的坐標(biāo);若不能,請(qǐng)說(shuō)明理由.
【答案】(1)A(-1,0),;(2);(3)P的坐標(biāo)為(1,)或(1,-4).
【解析】
試題(1)在中,令y=0,得到,,得到A(-1,0),B(3,0),由直線l經(jīng)過(guò)點(diǎn)A,得到,故,令,即,由于CD=4AC,故點(diǎn)D的橫坐標(biāo)為4,即有,得到,從而得出直線l的函數(shù)表達(dá)式;
(2)過(guò)點(diǎn)E作EF∥y軸,交直線l于點(diǎn)F,設(shè)E(,),則F(,),
EF==,S△ACE=S△AFE-S△CFE==,故△ACE的面積的最大值為,而△ACE的面積的最大值為,所以 ,解得;
(3)令,即,解得,,得到D(4,5a),因?yàn)閽佄锞的對(duì)稱(chēng)軸為,設(shè)P(1,m),然后分兩種情況討論:①若AD是矩形的一條邊,②若AD是矩形的一條對(duì)角線.
試題解析:(1)∵=,令y=0,得到,,∴A(-1,0),B(3,0),∵直線l經(jīng)過(guò)點(diǎn)A,∴,,∴,令,即,∵CD=4AC,∴點(diǎn)D的橫坐標(biāo)為4,∴,∴,∴直線l的函數(shù)表達(dá)式為;
(2)過(guò)點(diǎn)E作EF∥y軸,交直線l于點(diǎn)F,設(shè)E(,),則F(,),
EF==,
S△ACE=S△AFE-S△CFE=
==,
∴△ACE的面積的最大值為,∵△ACE的面積的最大值為,∴ ,解得;
(3)令,即,解得,,∴D(4,5a),∵,∴拋物線的對(duì)稱(chēng)軸為,設(shè)P(1,m),
①若AD是矩形的一條邊,則Q(-4,21a),m=21a+5a=26a,則P(1,26a),∵四邊形ADPQ為矩形,∴∠ADP=90°,∴,∴,即 ,∵,∴,∴P1(1,);
②若AD是矩形的一條對(duì)角線,則線段AD的中點(diǎn)坐標(biāo)為( ,),Q(2,),m=,則P(1,8a),∵四邊形APDQ為矩形,∴∠APD=90°,∴,∴,即 ,∵,∴,∴P2(1,-4).
綜上所述,以點(diǎn)A、D、P、Q為頂點(diǎn)的四邊形能成為矩形,點(diǎn)P的坐標(biāo)為(1,)或(1,-4).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,六個(gè)完全相同的小長(zhǎng)方形拼成了一個(gè)大長(zhǎng)方形,AB是其中一個(gè)小長(zhǎng)方形的對(duì)角線,請(qǐng)?jiān)诖箝L(zhǎng)方形中完成下列畫(huà)圖,要求:①僅用無(wú)刻度直尺,②保留必要的畫(huà)圖痕跡.
(1)在圖1中畫(huà)出一個(gè)45°角,使點(diǎn)A或點(diǎn)B是這個(gè)角的頂點(diǎn),且AB為這個(gè)角的一邊;
(2)在圖2中畫(huà)出線段AB的垂直平分線.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,點(diǎn)P是AB上一點(diǎn),且點(diǎn)P是弦CD的中點(diǎn).
(1)依題意畫(huà)出弦CD,并說(shuō)明畫(huà)圖的依據(jù);(不寫(xiě)畫(huà)法,保留畫(huà)圖痕跡)
(2)若AP=2,CD=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2015德陽(yáng))大華服裝廠生產(chǎn)一件秋冬季外套需面料1.2米,里料0.8米,已知面料的單價(jià)比里料的單價(jià)的2倍還多10元,一件外套的布料成本為76元.
(1)求面料和里料的單價(jià);
(2)該款外套9月份投放市場(chǎng)的批發(fā)價(jià)為150元/件,出現(xiàn)購(gòu)銷(xiāo)兩旺態(tài)勢(shì),10月份進(jìn)入批發(fā)淡季,廠方?jīng)Q定采取打折促銷(xiāo).已知生產(chǎn)一件外套需人工等固定費(fèi)用14元,為確保每件外套的利潤(rùn)不低于30元.
①設(shè)10月份廠方的打折數(shù)為m,求m的最小值;(利潤(rùn)=銷(xiāo)售價(jià)﹣布料成本﹣固定費(fèi)用)
②進(jìn)入11月份以后,銷(xiāo)售情況出現(xiàn)好轉(zhuǎn),廠方?jīng)Q定對(duì)VIP客戶在10月份最低折扣價(jià)的基礎(chǔ)上實(shí)施更大的優(yōu)惠,對(duì)普通客戶在10月份最低折扣價(jià)的基礎(chǔ)上實(shí)施價(jià)格上。阎獙(duì)VIP客戶的降價(jià)率和對(duì)普通客戶的提價(jià)率相等,結(jié)果一個(gè)VIP客戶用9120元批發(fā)外套的件數(shù)和一個(gè)普通客戶用10080元批發(fā)外套的件數(shù)相同,求VIP客戶享受的降價(jià)率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于的一元二次方程:.
(1)求證:對(duì)于任意實(shí)數(shù),方程都有實(shí)數(shù)根;
(2)當(dāng)為何值時(shí),方程的兩個(gè)根互為相反數(shù)?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,AB=AC,∠BAC=90°,BD⊥BC,CE⊥BC,∠DAE=45°,若BD=,CE=3,則線段DE=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司從2014年開(kāi)始投入技術(shù)改進(jìn)資金,經(jīng)技術(shù)改進(jìn)后,其產(chǎn)品的成本不斷降低,具體數(shù)據(jù)如下表:
年 度 | 2013 | 2014 | 2015 | 2016 |
投入技改資金(萬(wàn)元) | 2.5 | 3 | 4 | 4.5 |
產(chǎn)品成本(萬(wàn)元/件) | 7.2 | 6 | 4.5 | 4 |
(1)請(qǐng)你認(rèn)真分析表中數(shù)據(jù),從一次函數(shù)和反比例函數(shù)中確定哪一個(gè)函數(shù)能表示其變化規(guī)律,給出理由,并求出其解析式;
(2)按照這種變化規(guī)律,若2017年已投入資金5萬(wàn)元.
①預(yù)計(jì)生產(chǎn)成本每件比2016年降低多少萬(wàn)元?
②若打算在2017年把每件產(chǎn)品成本降低到3.2萬(wàn)元,則還需要投入技改資金多少萬(wàn)元?(結(jié)果精確到0.01萬(wàn)元).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】閱讀小明用下面的方法求出方程2﹣3x=0的
解法1:令=t,則x=t2 原方程化為2t﹣3t2=0 解方程2t﹣3t2=0,得t1=0,t2=; 所以=0或, 將方程=0或兩邊平方, 得x=0或, 經(jīng)檢驗(yàn),x=0或都是原方程的解. 所以,原方程的解是x=0或. | 解法2:移項(xiàng),得2=3x, 方程兩邊同時(shí)平方,得4x=9x2, 解方程4x=9x2,得x=0或, 經(jīng)檢驗(yàn),x=0或都是原方程的解. 所以,原方程的解是x=0或. |
請(qǐng)仿照他的某一種方法,求出方法x﹣=﹣1的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:矩形ABCD,AB=2,BC=5,動(dòng)點(diǎn)P從點(diǎn)B開(kāi)始向點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)P速度為每秒1個(gè)單位,以AP為對(duì)稱(chēng)軸,把△ABP折疊,所得△AB'P與矩形ABCD重疊部分面積為y,運(yùn)動(dòng)時(shí)間為t秒.
(1)當(dāng)運(yùn)動(dòng)到第幾秒時(shí)點(diǎn)B'恰好落在AD上;
(2)求y關(guān)于t的關(guān)系式,以及t的取值范圍;
(3)在第幾秒時(shí)重疊部分面積是矩形ABCD面積的;
(4)連接PD,以PD為對(duì)稱(chēng)軸,將△PCD作軸對(duì)稱(chēng)變換,得到△PC'D,當(dāng)t為何值時(shí),點(diǎn)P、B'、C'在同一直線上?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com