精英家教網 > 初中數學 > 題目詳情

【題目】如圖,的直徑,點上,,垂足為,分別交延長線于點

1)過點作直線,使得,判斷直線的位置關系,并說理.

2)若,,求的長.

3)連接,探索線段間的數量關系,并說明理由.

【答案】1)直線相切,理由詳見解析;(2 ;(3,證明詳見解析.

【解析】

1)連接OA,根據得到,由BC直徑,,得到,推出,利用得到,推出,即可得到直線相切的結論;

2)過點AAMBGM,根據得到∠ACB=ABE,證得△AMB∽△BAC,得到,利用勾股定理求出BC=5,即可求出,再證明△ABM∽△GBA,求出BG=;

3)在上截取,連接.證明,得到,由得到,推出.

1)解:直線相切,

理由:連接OA,

,

,

∵BC直徑,,

,

,

,

,

,

,

∴直線相切.

2)過點AAMBGM,

,

∴∠ACB=ABE,

∵∠BAC=AMB=90°,

∴△AMB∽△BAC,

∵∠BAC=90°,,,

BC=5

,

∵∠BAC=AMB=90°,∠ABM=GBA,

∴△ABM∽△GBA,

,

BG=;

3

理由:在上截取,連接

,

,

又∵,

又∵,

.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,Rt△ABC中,∠C=90°,∠ABC=30°,AC=4,△ABC繞點C順時針旋轉得△A1B1C,當A1落在AB邊上時,連接B1B,取BB1的中點D,連接A1D,則A1D的長度是(  )

A.B.C.D.6

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】武漢“新冠肺炎”發(fā)生以來,某醫(yī)療公司積極復工,加班加點生產醫(yī)用防護服,為防控一線助力.以下是該公司以往的市場調查,發(fā)現該公司防護服的日銷售量y(套)與銷售單價x(元)之間滿足一次函數關系,如下圖所示,關于日銷售利潤w(元)和銷售單價x(元)的幾組對應值如下表:

銷售單價x(元)

85

95

105

日銷售利潤w(元)

875

1875

1875

(注:日銷售利潤=日銷售量×(銷售單價一成本單價))

1)求y關于x的函數解析式(不要求寫出x的取值范圍);

2)根據函數圖象和表格所提供的信息,填空:

該公司生產的防護服的成本單價是   元,當銷售單價x   元時,日銷售利潤w最大,最大值是   元;

3)該公司復工以后,在政府部門的幫助下,原材料采購成本比以往有了下降,平均起來,每生產一套防護服,成本比以前下降5元.該公司計劃開展科技創(chuàng)新,以降低該產品的成本,如果在今后的銷售中,日銷售量與銷售單價仍存在(1)中的關系.若想實現銷售單價為90元時,日銷售利潤不低于3750元的銷售目標,該產品的成本單價應不超過多少元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】甲、乙兩人加工同一種零件,甲每天加工的數量是乙每天加工數量的 1.5 倍,兩人各加工 600 個這種零件,甲比乙少用 5 天.

1)求甲、乙兩人每天各加工多少個這種零件?

2)已知甲、乙兩人加工這種零件每天的加工費分別是 150 元和 120 元,現有 3000 個這種零件的加工任務,甲單獨加工一段時間后另有安排,剩余任務由乙單獨完成.如果總加工費不超過 7800 元,那么甲至少加工了多少天?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,A=∠B,AE=BE,點DAC邊上,∠1=∠2,AEBD相交于點O

1)求證:AECBED

2)若∠1=42°,求BDE的度數.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖在平面直角坐標系中,四邊形OABC是正方形,A的坐標是(4,0),p為邊AB上的一點,CPB=60°,沿CP折疊正方形后,B落在平面內B’處,B’的坐標為(

A.(2, 2)B.(, 2-2)C.(2, 4-2)D.(, 4-2)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,拋物線x軸于AB兩點,交y軸于點C.直線經過點AC

1)求拋物線的解析式;

2)點P是拋物線上一動點,過點Px軸的垂線,交直線AC于點M,設點P的橫坐標為m

①當是直角三角形時,求點P的坐標;

②作點B關于點C的對稱點,則平面內存在直線l,使點M,B,到該直線的距離都相等.當點Py軸右側的拋物線上,且與點B不重合時,請直接寫出直線的解析式.(k,b可用含m的式子表示)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,ABCADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點D在線段BC上,AF平分DEBC于點F,連接BE,EF.

(1)CDBE相等?若相等,請證明;若不相等,請說明理由;

(2)若∠BAC=90°,求證:BF2+CD2=FD2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(1)發(fā)現

如圖,點為線段外一動點,且.

填空:當點位于____________時,線段的長取得最大值,且最大值為_________.(用含的式子表示)

(2)應用

為線段外一動點,且,.如圖所示,分別以,為邊,作等邊三角形和等邊三角形,連接.

找出圖中與相等的線段,并說明理由;

直接寫出線段長的最大值.

(3)拓展

如圖,在平面直角坐標系中,點的坐標為,點的坐標為,點為線段外一動點,且,,,求線段長的最大值及此時點的坐標.

查看答案和解析>>

同步練習冊答案