【題目】如圖,⊙O的兩條弦AB、CD交于點E,OE平分∠BED.
(1)求證:AB=CD;
(2)若∠BED=60°,EO=2,求DE﹣AE的值.
【答案】(1)證明見解析;(2) .
【解析】試題(1)過點O作AB、CD的垂線,垂足為M、N,由角平分線的性質,可得OM=ON,然后由弦心距相等可得弦相等,即AB=CD;
(2)由(1)可得,OM=ON,AB=CD,OM⊥AB,ON⊥CD,由垂徑定理可得DN=CN=AM=BM,由HL可證Rt△EON≌Rt△EOM,繼而可得NE=ME,
從而得AE=CE, DE-AE=DE-CE=DN+NE-CE=CN+NE-CE=2NE,在Rt△EON中,由∠NEO=30°,OE=2,即可求出NE.
試題解析:(1)過點O作AB、CD的垂線,垂足為M、N,如圖1,
∵OE平分∠BED,且OM⊥AB,ON⊥CD,∴OM=ON,∴AB=CD;
(2)如圖2所示,由(1)知,OM=ON,AB=CD,OM⊥AB,ON⊥CD,∴DN=CN=AM=BM,在Rt△EON與Rt△EOM中,∵,∴Rt△EON≌Rt△EOM(HL),∴NE=ME,∴CD﹣DN﹣NE=AB﹣BM﹣ME,即AE=CE,∴DE﹣AE=DE﹣CE=DN+NE﹣CE=CN+NE﹣CE=2NE,∵∠BED=60°,OE平分∠BED,∴∠NEO= ∠BED=30°,∴ON=OE=1,在Rt△EON中,由勾股定理得:NE==,∴DE﹣AE=2NE=2.
科目:初中數(shù)學 來源: 題型:
【題目】一個不透明的袋子中裝有三個完全相同的小球,分別標有數(shù)字3、4、5.從袋子中隨機取出一個小球,用小球上的數(shù)字作為十位的數(shù)字,然后放回;再取出一個小球,用小球上的數(shù)字作為個位上的數(shù)字,這樣組成一個兩位數(shù),試問:按這種方法能組成哪些位數(shù)?十位上的數(shù)字與個位上的數(shù)字之和為9的兩位數(shù)的概率是多少?用列表法或畫樹狀圖法加以說明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是長為10m,傾斜角為37°的自動扶梯,平臺BD與大樓CE垂直,且與扶梯AB的長度相等,在B處測得大樓頂部C的仰角為65°,求大樓CE的高度(結果保留整數(shù)).
(參考數(shù)據(jù):sin37°≈,tan37°≈,sin65°≈,tan65°≈)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,邊長為1的正方形OA1B1C的對角線A1C和OB1交于點M1;以M1A1為對角線作第二個正方形A2A1B2M,對角線A1M1和A2B2交于點M2;以M2A1為對角線作第三個正方形A3A1B3M2,對角線A1M2和A3B3交于點M3;…,依此類推,這樣作的第6個正方形對角線交點的橫坐標為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了增強學生體質,決定開放以下球類活動項目:A.籃球、B.乒乓球、C.排球、D.足球.為了解學生最喜歡哪一種活動項目,隨機抽取了部分學生進行調查,并將調查結果繪制成了兩幅不完整的統(tǒng)計圖(如圖①,圖②),請回答下列問題:
(1)這次被調查的學生共有多少人?
(2)請你將條形統(tǒng)計圖補充完整;
(3)若該校共有學生1900人,請你估計該校喜歡D項目的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解中考體育科目訓練情況,某縣從全縣九年級學生中隨機抽取了部分學生進行了一次中考體育科目測試(把測試結果分為四個等級:A級:優(yōu)秀;B級良好;C級及格;D級不及格),并將測試結果繪制成了如下兩幅不完整的統(tǒng)計圖.請根據(jù)統(tǒng)計圖中的信息解答下列問題.
(1)本次抽樣測試的學生人數(shù)是 .
(2)圖1中∠α的度數(shù)是多少度?并直接把圖2條形統(tǒng)計圖補充完整;
(3)該縣九年級學生3500名,如果全部參加這次中考體育科目測試,請你估計不及格的人數(shù)多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有一塊長為21m、寬為10m的矩形空地,計劃在其中修建兩塊相同的矩形綠地,兩塊綠地之間及周邊留有寬度相等的人行通道,且人行通道的寬度不能超過3米.
(1)如果兩塊綠地的面積之和為90m2,求人行通道的寬度;
(2)能否改變人行通道的寬度,使得每塊綠地的寬與長之比等于3:5,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線的圖象與x軸交于A、B兩點(點A在點B的左邊),與y軸交于點C,點D為拋物線的頂點.
(1)求A、B、C的坐標;
(2)點M為線段AB上一點(點M不與點A、B重合),過點M作x軸的垂線,與直線AC交于點E,與拋物線交于點P,過點P作PQ∥AB交拋物線于點Q,過點Q作QN⊥x軸于點N.若點P在點Q左邊,當矩形PQMN的周長最大時,求△AEM的面積;
(3)在(2)的條件下,當矩形PMNQ的周長最大時,連接DQ.過拋物線上一點F作y軸的平行線,與直線AC交于點G(點G在點F的上方).若FG=DQ,求點F的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在菱形ABCD中,∠A=110°,點E是菱形ABCD內一點,連結CE繞點C順時針旋轉110°,得到線段CF,連結BE,DF,若∠E=86°,求∠F的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com