【題目】如圖,在中,點(diǎn)在邊上,且,,過點(diǎn)作,交邊于點(diǎn),將沿著折疊,得,與邊分別交于點(diǎn),.若的面積為15,則的面積是( )
A. 0.5B. 0.6C. 0.8D. 1.2
【答案】B
【解析】
由DE//BC可得:△ABC∽△ADE,從而得到S△ABC:S△ADE=AB2:AD2,求得S△ADE=,由折疊的性質(zhì)求得DF=2,FM=1,再由得到S△DEM:S△FMG=DM2:FM2,從而求得S△FMG.
∵,
∴△ABC∽△ADE,
∴S△ABC:S△ADE=AB2:AD2,
又∵,,的面積為15,
∴S△ADE=,
∵沿著折疊,得,與邊分別交于點(diǎn),
∴∠ADE=∠B=∠EDF=∠DFB,DM=AD=3,
∴DF=DB=2,
∴FM=DM-DF=3-2=1,
∵,
∴△DEM∽△FMG,
∴S△DEM:S△FMG=DM2:FM2,即
∴S△FMG=0.6.
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形紙片ABCD,點(diǎn)E是AB的中點(diǎn),點(diǎn)G是BC上的一點(diǎn),∠BEG>60°.現(xiàn)沿直線EG將紙片折疊,使點(diǎn)B落在紙片上的點(diǎn)H處,連接AH,則與∠BEG相等的角的個(gè)數(shù)為( 。
A. 5B. 3C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個(gè)函數(shù)和,若對于每個(gè)使函數(shù)有意義的實(shí)數(shù),函數(shù)的值為兩個(gè)函數(shù)值中中較小的數(shù),則稱函數(shù)為這兩個(gè)函數(shù)、的較小值函數(shù)。例如:,,則、的較小值函數(shù)
(1)函數(shù)是函數(shù),的較小值函數(shù);
①在如圖的平面直角坐標(biāo)系中畫出函數(shù)的圖像.
②寫出函數(shù)的兩條性質(zhì).
(2)函數(shù)是函數(shù),的較小值函數(shù),當(dāng)時(shí),函數(shù)值的取值范圍為.當(dāng)取某個(gè)范圍內(nèi)的任意值時(shí),為定值.直接寫出滿足條件的的取值范圍及其對應(yīng)的值.
(3)函數(shù)是函數(shù),(為常數(shù),且)的較小值函數(shù),當(dāng)時(shí),隨著的增大,函數(shù)值先增大后減小,直接寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-(m+1)x+(m2+1)=0.
(1)若該方程有實(shí)數(shù)根,求m的值.
(2)對于函數(shù)y1=x2-(m+1)x+(m2+1),當(dāng)x>1時(shí),y1隨著x的增大而增大.
①求m的范圍.
②若函數(shù)y2=2x+n與函數(shù)交于y軸上同一點(diǎn),求n的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,反比例函數(shù)y(b≠0)與二次函數(shù)y=ax2+bx(a≠0)的圖象大致是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“才飲長沙水,又食武昌魚”.因一代偉人毛澤東的佳句,“鄂州武昌魚”名揚(yáng)天下.某網(wǎng)店專門銷售某種品牌真空包裝的武昌魚熟食產(chǎn)品,成本為30元/盒,每天銷售y(盒)與銷售單價(jià)x(元)之間存在一次函數(shù)關(guān)系,如圖所示.
(1)求y與x之間的函數(shù)關(guān)系式;
(2)如果規(guī)定每天這種武昌魚熟食產(chǎn)品的銷售量不低于240盒,當(dāng)銷售單價(jià)為多少元時(shí),每天獲取的利潤最大,最大利潤是多少?
(3)該網(wǎng)店店主熱心公益事業(yè),決定從每天的銷售利潤中捐出150元給希望工程,為了保證捐款后每天剩余利潤不低于3 600元,試確定這種武昌魚熟食產(chǎn)品銷售單價(jià)的范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把圖中陰影部分的小正方形移動(dòng)一個(gè),使它與其余四個(gè)陰影部分的正方形組成一個(gè)既是軸對稱又是中心對稱的新圖形,這樣的移法,正確的是( 。
A. 6→3 B. 7→16 C. 7→8 D. 6→15
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB為直徑,∠BAC的平分線交⊙O于點(diǎn)D,過點(diǎn)D作DE⊥AC分別交AC、AB的延長線于點(diǎn)E、F.
(1)求證:EF是⊙O的切線;
(2)若AC=4,CE=2,求的長度.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ACBD是⊙O的內(nèi)接四邊形,AB為直徑,弧CD=弧AD,DE⊥BC,垂足為E.
(1)求證:BD平分∠ABE;
(2)判斷直線ED與⊙O的位置關(guān)系,并說明理由;
(3)若BE=2,AB=8,求陰影部分的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com