【題目】在平面直角坐標(biāo)系 xOy 中,直線 l:與 x 軸交于點(diǎn) A(-2,0),與 y 軸交于點(diǎn) B.雙曲線與直線 l 交于 P,Q 兩點(diǎn),其中點(diǎn) P 的縱坐標(biāo)大于點(diǎn) Q 的縱坐標(biāo).
(1)求點(diǎn) B 的坐標(biāo);
(2)當(dāng)點(diǎn) P 的橫坐標(biāo)為 2 時(shí),求 k 的值;
(3)連接 PO,記△POB 的面積為 S,若 ,直接寫(xiě)出 k 的取值范圍.
【答案】(1)(0,2);(2)8;(3)≤k≤3或-1≤k≤.
【解析】
(1)根據(jù)點(diǎn)A的坐標(biāo),可求出直線的解析式,再由解析式求出B點(diǎn)坐標(biāo).
(2)把點(diǎn)P的橫坐標(biāo)代入直線解析式即可求得點(diǎn)P的縱坐標(biāo),然后把點(diǎn)P代入反比例函數(shù)解析式即可得k值.
(3)根據(jù)△POB的面積為S的取值范圍求點(diǎn)P的橫坐標(biāo)取值,然后把橫坐標(biāo)代入直線解析式,即可求得點(diǎn)P縱坐標(biāo)的取值范圍,進(jìn)而求得k的取值范圍.
解:(1)∵直線l:y=x+b與x軸交于點(diǎn)A(2,0)
∴2+b=0
∴b=2
∴一次函數(shù)解析式為:y=x+2
當(dāng)x=0時(shí),y=2,
∴直線l與y軸交于點(diǎn)B為(0,2)
∴點(diǎn)B的坐標(biāo)為(0,2);
(2)∵雙曲線與直線l交于P,Q兩點(diǎn),
∴點(diǎn)P在直線l上
∴當(dāng)點(diǎn)P的橫坐標(biāo)為2時(shí),y=2+2=4
∴點(diǎn)P的坐標(biāo)為(2,4)
∴k=2×4=8
∴k的值為8;
(3)如圖所示,
①當(dāng)k>0時(shí),
S=×2×xp=xp,
∵≤S≤1,
∴≤xp≤1,
∵點(diǎn)P在直線y=x+2上,
∴≤yp≤3,
∵點(diǎn)P在反比例函數(shù),
∴xy=k,
∴≤k≤3,
②當(dāng)k<0時(shí),
S=×2×|xp|=xp,
∵≤S≤1,
∴≤-xp≤1,
∴-1≤xp≤
∵點(diǎn)P在直線y=x+2上,
∴1≤yp≤,
∵點(diǎn)Pspan>在反比例函數(shù),
∴xy=k,
∴-1≤k≤,
綜上所述,k的取值范圍為:≤k≤3或-1≤k≤.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是邊長(zhǎng)為4的等邊三角形,點(diǎn)D是AB上異于A,B的一動(dòng)點(diǎn),將△ACD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)60°得△BCE,則旋轉(zhuǎn)過(guò)程中△BDE周長(zhǎng)的最小值_____
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在Rt△ABC中,BC=9, CA=12,∠ABC的平分線BD交AC與點(diǎn)D, DE⊥DB交AB于點(diǎn)E.
(1)設(shè)⊙O是△BDE的外接圓,求證:AC是⊙O的切線;
(2)設(shè)⊙O交BC于點(diǎn)F,連結(jié)EF,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某“興趣小組”根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y=x+的圖象和性質(zhì)進(jìn)行了探究,探究過(guò)程如下,請(qǐng)補(bǔ)充完整
(1)函數(shù)y=x+的自變量取值范圍是 .
(2)下表是x與y的幾組對(duì)應(yīng)值
則表中m的值為 .
(3)根據(jù)表中數(shù)據(jù),在如圖所示平面直角坐標(biāo)xOy中描點(diǎn),并畫(huà)出函數(shù)的一部分,請(qǐng)畫(huà)出該函數(shù)的圖象的另一部分,
(4)觀察函數(shù)圖象:寫(xiě)出該函數(shù)的一條性質(zhì): .
(5)進(jìn)一步探究發(fā)現(xiàn):函數(shù)y=x+圖象與直線y=﹣2只有一交點(diǎn),所以方程x+=﹣2只有1個(gè)實(shí)數(shù)根,若方程x+=k(x<0)有兩個(gè)不相等的實(shí)數(shù)根,則k的取值范圍是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線與軸交于點(diǎn)C(0,3),其對(duì)稱(chēng)軸與軸交于點(diǎn)A(2,0).
(1)求拋物線的解析式;
(2)將拋物線適當(dāng)平移,使平移后的拋物線的頂點(diǎn)為D(0,).已知點(diǎn)B(2,2),若拋物線與△OAB的邊界總有兩個(gè)公共點(diǎn),請(qǐng)結(jié)合函數(shù)圖象,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知邊長(zhǎng)為2a的正方形ABCD,對(duì)角線AC、BD交于點(diǎn)Q,對(duì)于平面內(nèi)的點(diǎn)P與正方形ABCD,給出如下定義:如果,則稱(chēng)點(diǎn)P為正方形ABCD的“關(guān)聯(lián)點(diǎn)”.在平面直角坐標(biāo)系xOy中,若A(﹣1,1),B(﹣1,﹣1),C(1,﹣1),D(1,1).
(1)在,,中,正方形ABCD的“關(guān)聯(lián)點(diǎn)”有_____;
(2)已知點(diǎn)E的橫坐標(biāo)是m,若點(diǎn)E在直線上,并且E是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,求m的取值范圍;
(3)若將正方形ABCD沿x軸平移,設(shè)該正方形對(duì)角線交點(diǎn)Q的橫坐標(biāo)是n,直線與x軸、y軸分別相交于M、N兩點(diǎn).如果線段MN上的每一個(gè)點(diǎn)都是正方形ABCD的“關(guān)聯(lián)點(diǎn)”,求n的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與軸交于、兩點(diǎn),與軸交于點(diǎn),的半徑為,為上一動(dòng)點(diǎn).
(1)求點(diǎn),的坐標(biāo)?
(2)是否存在點(diǎn),使得為直角三角形?若存在,求出點(diǎn)的坐標(biāo):若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在正方形中,分別是上的點(diǎn),且,則有結(jié)論成立;
如圖2,在四邊形中,分別是上的點(diǎn),且是的一半, 那么結(jié)論是否仍然成立?若成立,請(qǐng)證明;不成立,請(qǐng)說(shuō)明理由.
若將中的條件改為:如圖3,在四邊形中,,延長(zhǎng)到點(diǎn),延長(zhǎng)到點(diǎn),使得仍然是的一半,則結(jié)論是否仍然成立?若成立,請(qǐng)證明;不成立,請(qǐng)寫(xiě)出它們的數(shù)量關(guān)系并證明
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中, ,頂點(diǎn)在 軸上,頂點(diǎn)在反比例函數(shù)的圖象上,已知點(diǎn) 的縱坐標(biāo)是 3,則經(jīng)過(guò)點(diǎn) 的反比例函數(shù)的解析式為_____________
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com