【題目】大于-3而小于2的所有整數(shù)的和是______.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】太陽的半徑約為696300km.696 300這個(gè)數(shù)用科學(xué)記數(shù)法可表示為( )
A.0.696 3×106
B.6.963×105
C.69.63×104
D.696.3×103
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知Rt△ABC≌Rt△ADE,其中∠ACB=∠AED=90°.
(1)將這兩個(gè)三角形按圖①方式擺放,使點(diǎn)E落在AB上,DE的延長線交BC于點(diǎn)F.求證:BF+EF=DE;
(2)改變△ADE的位置,使DE交BC的延長線于點(diǎn)F(如圖②),則(1)中的結(jié)論還成立嗎?若成立,加以證明;若不成立,寫出此時(shí)BF、EF與DE之間的等量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道不等式的兩邊加(或減)同一個(gè)數(shù)(或式子)不等號的方向不變.不等式組是否也具有類似的性質(zhì)?請完成下列填空(填“>”或“<”),探索歸納得到一般的關(guān)系式:
(1)已知可得5+2 3+1,已知可得﹣5﹣2 ﹣3﹣1;
已知可得﹣2+1 3+4,…,一般地,如果 , 那么a+c b+d.
(2)應(yīng)用不等式的性質(zhì)證明上述關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC的兩腰AB、BC上分別取點(diǎn)D和E,使DB=DE,此時(shí)恰有∠ADE= ∠ACB,則∠B的度數(shù)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們知道對于x軸上的任意兩點(diǎn)A(x1,0),B(x2,0),有AB=|x1﹣x2|,而對于平面直角坐標(biāo)系中的任意兩點(diǎn)P1(x1,y1),P2(x2,y2),我們把|x1﹣x2|+|y1﹣y2|稱為Pl,P2兩點(diǎn)間的直角距離,記作d(P1,P2),即d(P1,P2)=|x1﹣x2|+|y1﹣y2|.
(1)已知O為坐標(biāo)原點(diǎn),若點(diǎn)P坐標(biāo)為(1,3),則d(O,P)= ;
(2)已知O為坐標(biāo)原點(diǎn),動點(diǎn)P(x,y)滿足d(O,P)=2,請寫出x與y之間滿足的關(guān)系式,并在所給的直角坐標(biāo)系中畫出所有符合條件的點(diǎn)P所組成的圖形;
(3)試求點(diǎn)M(2,3)到直線y=x+2的最小直角距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)為了鼓勵(lì)市民節(jié)約用水,計(jì)劃實(shí)行生活用水按階梯式水價(jià)計(jì)費(fèi),每月用水量不超過10噸(含10噸)時(shí),每噸按基礎(chǔ)價(jià)收費(fèi);每月用水量超過10噸時(shí),超過的部分每噸按調(diào)節(jié)價(jià)收費(fèi).例如,第一個(gè)月用水16噸,需交水費(fèi)17.8元,第二個(gè)月用水20噸,需交水費(fèi)23元.
(1)求每噸水的基礎(chǔ)價(jià)和調(diào)節(jié)價(jià);
(2)設(shè)每月用水量為x噸,應(yīng)交水費(fèi)為y元,寫出y與x之間的函數(shù)關(guān)系式;
(3)若某月用水12噸,應(yīng)交水費(fèi)多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com