【題目】在等腰三角形中,,作AB于點(diǎn)MAC于點(diǎn)N

1)在圖1中,求證:

2)在圖2中的線段CB上取一動點(diǎn)P,過PCM于點(diǎn)E,作BN于點(diǎn)F,求證:

3)在圖3中動點(diǎn)P在線段CB的延長線上,類似(2)過PCM的延長線于點(diǎn)E,作NB的延長線于點(diǎn)F,求證:

【答案】1)見解析;(2)見解析;(3)見解析

【解析】

1)根據(jù)等腰三角形的性質(zhì)得到,利用AAS定理證明;

2)根據(jù)全等三角形的性質(zhì)得到,證明、,根據(jù)相似三角形的性質(zhì)列出比例式,證明結(jié)論;

3)根據(jù),得到,證明,得到,根據(jù)比例的性質(zhì)證明即可.

證明:(1)∵,

,

,

,

中,

,

2)∵,

,

,

,

,

,

,

;

3)同(2)的方法得到,,

,

,

,

,

,

,又

,

,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校在宣傳民族團(tuán)結(jié)活動中,采用四種宣傳形式:A.器樂,B.舞蹈,C.朗誦,D.唱歌.每名學(xué)生從中選擇并且只能選擇一種最喜歡的,學(xué)校就宣傳形式對學(xué)生進(jìn)行了抽樣調(diào)查,并將調(diào)查結(jié)果繪制了如下兩幅不完整的統(tǒng)計(jì)圖.

請結(jié)合圖中所給信息,解答下列問題:

(1)本次調(diào)查的學(xué)生共有_____人;

(2)補(bǔ)全條形統(tǒng)計(jì)圖;

(3)該校共有1200名學(xué)生,請估計(jì)選擇唱歌的學(xué)生有多少人?

(4)七年一班在最喜歡器樂的學(xué)生中,有甲、乙、丙、丁四位同學(xué)表現(xiàn)優(yōu)秀,現(xiàn)從這四位同學(xué)中隨機(jī)選出兩名同學(xué)參加學(xué)校的器樂隊(duì),請用列表或畫樹狀圖法求被選取的兩人恰好是甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠BAC=90°AB=AC,點(diǎn)DBC上一動點(diǎn),連接AD,過點(diǎn)AAEAD,并且始終保持AE=AD,連接CE

1)求證:ABD≌△ACE;

2)若AF平分∠DAEBCF,探究線段BD,DF,FC之間的數(shù)量關(guān)系,并證明;

3)在(2)的條件下,若BD=3,CF=4,求AD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,某商場計(jì)劃購進(jìn)甲、乙兩種商品,已知購進(jìn)甲商品1件和乙商品3件共需240元;購進(jìn)甲商品2件和乙商品1件共需130元.

1)求甲、乙兩種商品每件的進(jìn)價(jià)分別是多少元?

2)商場決定甲商品以每件40元出售,乙商品以每件90元出售,為滿足市場需求,需購進(jìn)甲、乙兩種商品共100件,且甲種商品的數(shù)量不少于乙種商品數(shù)量的4倍,請你求出獲利最大的進(jìn)貨方案,并確定最大利潤.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,EAB邊的中點(diǎn),沿EC對折矩形ABCD,使B點(diǎn)落在點(diǎn)P處,折痕為EC,連結(jié)AP并延長APCDF點(diǎn),連結(jié)CP并延長CPADQ點(diǎn).給出以下結(jié)論:

①四邊形AECF為平行四邊形;

②∠PBA=APQ;

③△FPC為等腰三角形;

④△APB≌△EPC.

其中正確結(jié)論的個數(shù)為( 。

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,反比例函數(shù)與一次函數(shù)在第三象限交于點(diǎn).點(diǎn)的坐標(biāo)為(3,0),點(diǎn)軸左側(cè)的一點(diǎn).若以為頂點(diǎn)的四邊形為平行四邊形.則點(diǎn)的坐標(biāo)為_____________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線y1=ax2x+cx軸交于點(diǎn)A和點(diǎn)B(1,0),與y軸交于點(diǎn)C(0,),拋物線y1的頂點(diǎn)為G,GMx軸于點(diǎn)M.將拋物線y1平移后得到頂點(diǎn)為B且對稱軸為直線l的拋物線y2

(1)求拋物線y2的解析式;

(2)如圖2,在直線l上是否存在點(diǎn)T,使TAC是等腰三角形?若存在,請求出所有點(diǎn)T的坐標(biāo);若不存在,請說明理由;

(3)點(diǎn)P為拋物線y1上一動點(diǎn),過點(diǎn)Py軸的平行線交拋物線y2于點(diǎn)Q,點(diǎn)Q關(guān)于直線l的對稱點(diǎn)為R,若以P,Q,R為頂點(diǎn)的三角形與AMG全等,求直線PR的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形OABC的頂點(diǎn)Ax軸上,頂點(diǎn)B的坐標(biāo)為(8,4),點(diǎn)P是對角線OB上一個動點(diǎn),點(diǎn)D的坐標(biāo)為(0,﹣2),當(dāng)DPAP之和最小時,點(diǎn)P的坐標(biāo)為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)的圖象如圖所示,現(xiàn)有下列結(jié)論:①;;;.則其中結(jié)論正確的是(

A. ①③ B. ③④ C. ②③ D. ①④

查看答案和解析>>

同步練習(xí)冊答案