【題目】如圖,C是上的一定點,P是弦AB上的一動點,連接PC,過點A作AQ⊥PC交直線PC于點Q.小石根據(jù)學習函數(shù)的經(jīng)驗,對線段PC,PA,AQ的長度之間的關系進行了探究.(當點P與點A重合時,令AQ=0cm)
下面是小石的探究過程,請補充完整:
(1)對于點P在弦AB上的不同位置,畫圖、測量,得到了線段PC,PA,AQ的幾組值,如表:
位置1 | 位置2 | 位置3 | 位置4 | 位置5 | 位置6 | 位置7 | 位置8 | 位置9 | |
PC/cm | 4.07 | 3.10 | 2.14 | 1.68 | 1.26 | 0.89 | 0.76 | 1.26 | 2.14 |
PA/cm | 0.00 | 1.00 | 2.00 | 2.50 | 3.00 | 3.54 | 4.00 | 5.00 | 6.00 |
AQ/cm | 0.00 | 0.25 | 0.71 | 1.13 | 1.82 | 3.03 | 4.00 | 3.03 | 2.14 |
在PC,PA,AQ的長度這三個量中,確定 的長度是自變量, 的長度和 的長度都是這個自變量的函數(shù);
(2)在同一平面直角坐標系xOy中,畫出(1)中所確定的函數(shù)的圖象;
(3)結合函數(shù)圖象,解決問題:當AQ=PC時,PA的長度約為 cm.(結果保留一位小數(shù))
【答案】(1)PA、PC、AQ;(2)見解析;(3)2.8或6.0(答案不唯一).
【解析】
(1)根據(jù)變量的定義即可求解;
(2)依據(jù)表格中的數(shù)據(jù)描點、連線即可得;
(3)兩函數(shù)圖象交點的橫坐標即為所求.
(1)根據(jù)變量的定義,AP是自變量,PC、AQ是因變量,即PC、AQ是AP的函數(shù),
故答案為:PA、PC、AQ;
(2)依據(jù)表格中的數(shù)據(jù)描點、連線即可得;
(3)當AQ=PC時,即為兩個函數(shù)圖象的交點,
從圖上看,交點的橫坐標大約為2.8cm或6.0cm,
故答案為:2.8或6.0(答案不唯一).
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列分式方程的求解過程,指出其中錯誤的步驟,說明錯誤的原因,并直接給出正確結果.
解分式方程:1﹣=.
解:去分母,得2x+2﹣(x﹣3)=3x,…步驟1
去括號,得2x+2﹣x﹣3=3x,…步驟2
移項,得2x﹣x﹣3x=2﹣3,…步驟3
合并同類項,得﹣2x=﹣1,…步驟4
解得x=.…步驟5
所以,原分式方程的解為x=.…步驟6
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:在平面直角坐標系中,對于任意的實數(shù),直線都經(jīng)過平面內(nèi)一個定點.
(1)求點的坐標.
(2)反比例函數(shù)的圖象與直線交于點和另外一點
①求的值;
②當時,求的取值范圍
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知線段AB,過點A的射線l⊥AB.在射線l上截取線段AC=AB,連接BC,點M為BC的中點,點P為AB邊上一動點,點N為線段BM上一動點,以點P為旋轉中心,將△BPN逆時針旋轉90°得到△DPE,B的對應點為D,N的對應點為E.
(1)當點N與點M重合,且點P不是AB中點時,
①據(jù)題意在圖中補全圖形;
②證明:以A,M,E,D為頂點的四邊形是矩形.
(2)連接EM.若AB=4,從下列3個條件中選擇1個:
①BP=1,②PN=1,③BN=,
當條件 (填入序號)滿足時,一定有EM=EA,并證明這個結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下面是小石設計的“過直線上一點作這條直線的垂線”的尺規(guī)作圖過程.
已知:如圖1,直線l及直線l上一點P.
求作:直線PQ,使得PQ⊥l.
作法:如圖2:
①以點P為圓心,任意長為半徑作弧,交直線l于點A,B;
②分別以點A,B為圓心,以大于AB的同樣長為半徑作弧,兩弧在直線l上方交于點Q;
③作直線PQ.
所以直線PQ就是所求作的直線.
根據(jù)小石設計的尺規(guī)作圖過程:
(1)使用直尺和圓規(guī),補全圖形(保留作圖痕跡);
(2)完成下面的證明.
證明:連接QA,QB.
∵QA= ,PA= ,
∴PQ⊥l ( )(填推理的依據(jù)).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在四邊形ABCD中,用①AB∥DC,②AD=BC,③∠A=∠C中的兩個作為題設,余下的一個作為結論.用“如果…,那么…“的形式,寫出一個真命題:在四邊形ABCD中,_______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,∠QAN為銳角,H、B分別為射線AN上的點,點H關于射線AQ的對稱點為C,連接AC,CB.
(1)依題意補全圖;
(2)CB的垂直平分線交AQ于點E,交BC于點F.連接CE,HE,EB.
①求證:△EHB是等腰三角形;
②若AC+AB=AE,求的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在ABCD中,∠ABC=60°,∠BAD的平分線交CD于點E,交BC的延長線于點F,連接DF.
(1)求證:△ABF是等邊三角形;
(2)若∠CDF=45°,CF=2,求AB的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了推動全社會自覺尊法學法守法用法,促進全面依法治國,某區(qū)每年都舉辦普法知識競賽,該區(qū)某單位甲、乙兩個部門各有員工200人,要在這兩個部門中挑選一個部門代表單位參加今年的競賽,為了解這兩個部門員工對法律知識的掌握情況,進行了抽樣調(diào)查,從甲、乙兩個部門各隨機抽取20名員工,進行了法律知識測試,獲得了他們的成績(百分制),并對數(shù)據(jù)(成績)進行整理,描述和分析,下面給出了部分信息.
a.甲部門成績的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:40≤x<50,50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100)
b.乙部門成績?nèi)缦拢?/span>
40 52 70 70 71 73 77 78 80 81
82 82 82 82 83 83 83 86 91 94
c.甲、乙兩部門成績的平均數(shù)、方差、中位數(shù)如下:
平均數(shù) | 方差 | 中位數(shù) | |
甲 | 79.6 | 36.84 | 78.5 |
乙 | 77 | 147.2 | m |
d.近五年該單位參賽員工進入復賽的出線成績?nèi)缦拢?/span>
2014年 | 2015年 | 2016年 | 2017年 | 2018年 | |
出線成績(百分制) | 79 | 81 | 80 | 81 | 82 |
根據(jù)以上信息,回答下列問題:
(1)寫出表中m的值;
(2)可以推斷出選擇 部門參賽更好,理由為 ;
(3)預估(2)中部門今年參賽進入復賽的人數(shù)為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com