【題目】為響應(yīng)國家的“節(jié)能減排”政策,某廠家開發(fā)了一種新型的電動車,如圖,它的大燈A射出的光線AB、AC與地面MN的夾角分別為22°和31°,AT⊥MN,垂足為T,大燈照亮地面的寬度BC的長為m.

1)求BT的長(不考慮其他因素).

(2)一般正常人從發(fā)現(xiàn)危險到做出剎車動作的反應(yīng)時間是0.2s,從發(fā)現(xiàn)危險到電動車完全停下所行駛的距離叫做最小安全距離.某人以20km/h的速度駕駛該車,從做出剎車動作到電動車停止的剎車距離是,請判斷該車大燈的設(shè)計是否能滿足最小安全距離的要求(大燈與前輪前端間水平距離忽略不計),并說明理由.

(參考數(shù)據(jù):sin22°tan22°,sin31°,tan31°

【答案】該車大燈的設(shè)計不能滿足最小安全距離的要求,理由詳見解析.

【解析】試題分析:1)在直角中,根據(jù)三角函數(shù)的定義,若 中利用三角函數(shù)即可列方程求解;
2)求出正常人作出反應(yīng)過程中電動車行駛的路程,加上剎車距離,然后與的長進(jìn)行比較即可.

試題解析:

1)根據(jù)題意及圖知:

中,

可設(shè)

中,

,

即: ,

解得: ,

,

;

,

, ,

∴該車大燈的設(shè)計不能滿足最小安全距離的要求.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】碭山酥梨是一種馳名中外的特色水果,它是梨的一種,因為出產(chǎn)于碭山縣而得名,F(xiàn)有20筐碭山酥梨,以每筐25千克的質(zhì)量為標(biāo)準(zhǔn),超過或不足的千克數(shù)分別用正、負(fù)數(shù)來表示,記錄如下:

(1)20筐碭山酥梨中,最重的一筐比最輕的一筐重多少千克?

(2)與標(biāo)準(zhǔn)質(zhì)量比較,這20筐碭山酥梨總計超過或不足多少千克?

(3)若碭山酥梨每千克售價4元,則這20筐碭山酥梨可賣多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】請任選一題作答:

(A)已知正比例函數(shù)與反比例函數(shù)的圖象都經(jīng)過點(2,1).求這兩個函數(shù)關(guān)系式.

(B)已知函數(shù)y = y1 +y2,y1x成正比例,y2x成反比例,且當(dāng)x = 1時,y =1;當(dāng)x = 3時,y = 5.y關(guān)于x的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知兩個關(guān)于x的一元二次方程M ;N ,其中,有下列三個結(jié)論:

①若方程M有兩個相等的實數(shù)根,則方程N也有兩個相等的實數(shù)根;

②若6是方程M的一個根,則是方程N的一個根;

③若方程M和方程N有一個相同的根,則這個根一定是其中正確結(jié)論的個數(shù)是

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,∠BAD=60°,AB=2,EDC邊上一個動點,FAB邊上一點,∠AEF=30°.設(shè)DE=x,圖中某條線段長為y,yx滿足的函數(shù)關(guān)系的圖象大致如圖所示,則這條線段可能是圖中的(  ).

A. 線段EC B. 線段AE C. 線段EF D. 線段BF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對某一個函數(shù)給出如下定義:若存在實數(shù),對于任意的函數(shù)值,都滿足,則稱這個函數(shù)是有界函數(shù),在所有滿足條件的中,其最小值稱為這個函數(shù)的邊界值.例如,下圖中的函數(shù)是有界函數(shù),其邊界值是1

1)分別判斷函數(shù)是不是有界函數(shù)?若是有界函數(shù),求其邊界值;

2)若函數(shù)的邊界值是2,且這個函數(shù)的最大值也是2,求的取值范圍;

3)將函數(shù)的圖象向下平移個單位,得到的函數(shù)的邊界值是,當(dāng)在什么范圍時,滿足

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的中線BDCE交于點O,F,G分別是BO,CO的中點.

1)求證:四邊形DEFG是平行四邊形;

2)若ABAC,則四邊形DEFG (填寫特殊的平行四邊形);

3)當(dāng)四邊形DEFG為邊長為2的正方形時,的周長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:中,,求證:,下面寫出可運(yùn)用反證法證明這個命題的四個步驟:

①∴,這與三角形內(nèi)角和為矛盾,②因此假設(shè)不成立.∴,③假設(shè)在中,,④由,得,即.這四個步驟正確的順序應(yīng)是( 。

A.③④②①B.③④①②C.①②③④D.④③①②

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB⊙O的直徑,點C⊙O上,過點C的直線與AB的延長線交于點P,AC=PC,∠COB=2∠PCB.

1)求證:PC⊙O的切線;

2)求證:BC=AB;

3)點M是弧AB的中點,CMAB于點N,若AB=4,求MNMC的值.

查看答案和解析>>

同步練習(xí)冊答案