【題目】某超市決定購進甲、乙兩種取暖器,已知甲種取暖器每臺進價比乙種取暖器多500元, 用40000元購進甲種取暖器的數(shù)量與用30000元購進乙種取暖器的數(shù)量相同.請解答下列問題:
(1)求甲、乙兩種取暖器每臺的進價;
(2)若甲種取暖器每臺售價2500元,乙種取暖器每臺售價1800元,超市欲同時購進兩種取暖器20 臺,且全部售出.設購進甲種取暖器x(臺),所獲利潤為y(元),試用關于x的式子表示y;
(3)在(2)的條件下,若超市計劃用不超過36000元購進取暖器,且甲種取暖器至少購進10臺, 并將所獲得的最大利潤全部用于為某敬老院購買1100元/臺的A型按摩器和700元/臺的B型按摩器. 求購買按摩器的方案.
【答案】(1)甲、乙兩種取暖器每臺進價分別為2000元、1500元;(2)y=200x+6000;(3)有兩種購買方案:①A型0臺,B型12臺;②A型7臺,B型1臺.
【解析】
(1)根據(jù)題意可以列出相應的方程,從而可以分別求得甲、乙兩種取暖器每臺的進價,注意分式方程要檢驗;
(2)根據(jù)題意和(1)中的答案可以得到所獲利潤y(元)與甲種取暖器x(臺)之間的函數(shù)關系式;
(3)設購買甲種取暖器n臺,根據(jù)商場計劃用不超過36000元購進取暖器共20臺,可以求得n的取值范圍,從而可以求得所能獲得的最大利潤,然后根據(jù)題意列出二元一次方程,找到符合題意的解即可.
解:(1)設乙種取暖器每臺進價為x元,則甲種取暖器每臺進價為(x+500)元.
根據(jù)題意得:,
解得:x=1500
經檢驗x=1500是分式方程的解,且x+500=2000,
即甲、乙兩種取暖器每臺進價分別為2000元、1500元;
(2)根據(jù)題意得:y=(25002000)x+(18001500)(20x)=200x+6000;
(3)設購買甲種取暖器n臺,則購買乙種取暖器(20n)臺.
根據(jù)題意得:2000n+1500(20n)≤36000,且n≥10(n為正整數(shù))
解得:10≤n≤12
當n=12時,最大利潤為8400元
設購買A型按摩器a臺,購買B型按摩器b臺,則1100a+700b=8400,
故有兩種購買方案:①A型0臺,B型12臺;②A型7臺,B型1臺.
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示的方格紙中的每個小正方形的邊長均為1,點A、B在小正方形的頂點上.在圖中畫出△ABC(點C在小正方形的頂點上),使△ABC為直角三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,OB為∠AOC的平分線,OD是∠COE的平分線.
(1)如果∠AOB=40°,∠DOE=30°,那么∠BOD為多少度?
(2)如果∠AOE=140°,∠COD=30°,那么∠AOB為多少度?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,四邊形ABCD為菱形,△ABD的外接圓⊙O與CD相切于點D,交AC于點E.
(1)判斷⊙O與BC的位置關系,并說明理由;
(2)若CE=2,求⊙O的半徑r.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】兩塊等腰直角三角形紙片AOB和COD按圖1所示放置,直角頂點重合在點O處,AB=25,CD=17.保持紙片AOB不動,將紙片COD繞點O逆時針旋轉α(0°<α<90°)角度,如圖2所示.
(1)利用圖2證明AC=BD且AC⊥BD;
(2)當BD與CD在同一直線上(如圖3)時,求AC的長和α的正弦值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“奔跑吧,兄弟!”節(jié)目組預設計一個新游戲:“奔跑”路線A、B、C、D四地,如圖A、B、C三地在同一直線上,D在A北偏東30°方向,在C北偏西45°方向,C在A北偏東75°方向,且BD=BC=40m,從A地到D地的距離是_____m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC與△A1B1C1是位似圖形.
(1)在網(wǎng)格上建立平面直角坐標系,使得點A的坐標為(﹣6,﹣1),點C1的坐標為(﹣3,2),則點B的坐標為 ;
(2)以點A為位似中心,在網(wǎng)格圖中作△AB2C2,使△AB2C2和△ABC位似,且位似比為1:2;
(3)在圖上標出△ABC與△A1B1C1的位似中心P,并寫出點P的坐標為 ,計算四邊形ABCP的周長為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在ABCD中,AE⊥BC于點E,F為AB邊上一點,連接CF,交AE于點G,CF=CB=AE.
(1)若AB,BC,求CE的長;
(2)求證:BE=CG﹣AG.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀解題過程,回答問題.
如圖,OC在∠AOB內,∠AOB和∠COD都是直角,且∠BOC=30°,求∠AOD的度數(shù).
解:過O點作射線OM,使點M,O,A在同一直線上.
因為∠MOD+∠BOD=90°,∠BOC+∠BOD=90°,所以∠BOC=∠MOD,
所以∠AOD=180°-∠BOC=180°-30°=150°.
(1)如果∠BOC=60°,那么∠AOD等于多少度?如果∠BOC=n°,那么∠AOD等于多少度?
(2)如果∠AOB=∠DOC=x°,∠AOD=y°,求∠BOC的度數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com