【題目】已知四邊形的對角線,,、、、分別是、、、的中點,則的值是_______.
【答案】118
【解析】
先根據(jù)、、、分別是、、、的中點得到四邊形PQRS是平行四邊形,再根據(jù)平行四邊形的對角線的平方與四條邊邊長的平方的關(guān)系即可得到答案.
∵、、、分別是、、、的中點,
∴=(中位線的性質(zhì)),
同理可得:=
并且有 PS∥BD,PS=BD(中位線的性質(zhì)),
同理可得:QR∥BD,QR=,
∴PS∥QR,(等量替換),
∴四邊形PQRS是平行四邊形,
∴=+(平行四邊形兩條對角線的平方和等于四條邊長的平方和,后附證明過程)
=
=27+32+27+32
=118.
附:四邊形ABCD是平行四邊形,則=+
證明: 如圖,作垂直于E,作垂直于的延長線,交于點F.
∵四邊形ABCD是平行四邊形,
∴AB∥DC,AB=DC,AD=BC,
∴DE=CF(兩平行線間的距離相等),
∴Rt△AED≌Rt△BFC(HL)
∴AE=BF,
根據(jù)勾股定理得:
,
,
,
=
=
∵(勾股定理)
∴=+(等量替換).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在,,以為圓心,任意長為半徑畫弧,分別交,于點,,再分別以,,為圓心,大于長為半徑畫弧,兩弧交于點,作弧線,交于點.已知,,則的長為( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,點A,C分別在x軸,y軸上,四邊形ABCO為矩形,AB=16,AC=20,點D與點A關(guān)于y軸對稱,點E、F分別是線段AD、AC上的動點(點E不與點A、D重合),且∠CEF=∠ACB.
(1)直接寫出BC的長是 ,點D的坐標是 ;
(2)證明:△AEF與△DCE相似;
(3)當△EFC為等腰三角形時,求點E的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】端午節(jié)三天假期的某一天,小明全家上午8時自駕小汽車從家里出發(fā),到某著名旅游景點游玩.該小汽車離家的距離S(千米)與時間t(小時)的關(guān)系如圖所示.
(1)在這個過程中,自變量是 ,因變量是 .
(2)景點離小明家多遠?
(3)小明一家在景點游玩的時間是多少小時?
(4)小明到家的時間是幾點?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,A(a,0),B(0,b),C(-a,0),且+b2-4b+4=0.
(1)求證:∠ABC=90°;
(2)∠ABO的平分線交x軸于點D,求D點的坐標.
(3)如圖,在線段AB上有兩動點M、N滿足∠MON=45°,求證:BM2+AN2=MN2.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,一次函數(shù)y=kx+b(k,b都是常數(shù),且k≠0)的圖象經(jīng)過點(1,0)和(0,2).
(1)當﹣2<x≤3時,求y的取值范圍;
(2)已知點P(m,n)在該函數(shù)的圖象上,且m﹣n=4,求點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,甲、乙兩人在玩轉(zhuǎn)盤游戲時,準備了兩個可以自由轉(zhuǎn)動的轉(zhuǎn)盤A,B,每個轉(zhuǎn)盤被分成面積相等的幾個扇形,并在每一個扇形內(nèi)標上數(shù)字.游戲規(guī)則:同時轉(zhuǎn)動兩個轉(zhuǎn)盤,當轉(zhuǎn)盤停止后,指針所指區(qū)域的數(shù)字之和為0時,甲獲勝;數(shù)字之和為1時,乙獲勝.如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一區(qū)域為止.
(1)用畫樹狀圖或列表法求乙獲勝的概率;
(2)這個游戲規(guī)則對甲、乙雙方公平嗎?請判斷并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形OABC的頂點A、C分別在的正半軸上,點B的坐標為(3,4)一次函數(shù)的圖象與邊OC、AB分別交于點D、E,并且滿足OD= BE.點M是線段DE上的一個動點.
(1)求b的值;
(2)連結(jié)OM,若三角形ODM的面積與四邊形OAEM的面積之比為1:3,求點M的坐標;
(3)設點N是軸上方平面內(nèi)的一點,以O、D、M、N為頂點的四邊形是菱形,求點N的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com