【題目】如圖,在平面直角坐標(biāo)系中,直線l與x軸相交于點(diǎn)M(3,0),與y軸相交于點(diǎn)N(0,4),點(diǎn)A為MN的中點(diǎn),反比例函數(shù)y=(x>0)的圖象過(guò)點(diǎn)A.
(1)求直線l和反比例函數(shù)的解析式;
(2)在函數(shù)y=(k>0)的圖象上取異于點(diǎn)A的一點(diǎn)C,作CB⊥x軸于點(diǎn)B,連接OC交直線l于點(diǎn)P,若△ONP的面積是△OBC面積的3倍,求點(diǎn)P的坐標(biāo).
【答案】(1)y=﹣x+4,y= ;(2)點(diǎn)P的坐標(biāo)為( ,1).
【解析】試題分析:(1)設(shè)直線l的解析式為,利用待定系數(shù)法即可求得直線的解析式;根據(jù)已知求得A點(diǎn)的坐標(biāo),然后把A代入 即可求得解析式;
(2)根據(jù)反比例函數(shù)系數(shù)k的幾何意義得出 進(jìn)而得出 設(shè)P點(diǎn)的坐標(biāo)為根據(jù) 即可求得的值,進(jìn)而求得P的坐標(biāo).
試題解析:(1)設(shè)直線l的解析式為,
將代入
得解得: ,
∴直線l的解析式為
∵點(diǎn)A為線段MN的中點(diǎn),
∴點(diǎn)A的坐標(biāo)為
將代入
得
∴反比例函數(shù)解析式為
(2)∵
∴
∵點(diǎn)
∴
設(shè)點(diǎn)P的坐標(biāo)為 則
∴
∴
則
∴點(diǎn)P的坐標(biāo)為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)根據(jù)圖中提供的信息,回答下列問(wèn)題。
(1)一個(gè)暖瓶與一個(gè)水杯分別是多少元?
(2)甲、乙兩家商場(chǎng)同時(shí)出售同樣的暖瓶和水杯,為了迎接新年,兩家商場(chǎng)都在搞促銷活動(dòng),甲商場(chǎng)規(guī)定:這兩種商品都打九折;乙商場(chǎng)規(guī)定:買一個(gè)暖瓶贈(zèng)送一個(gè)水杯.若某單位想要買4個(gè)暖瓶和15個(gè)水杯,請(qǐng)問(wèn)選擇哪家商場(chǎng)購(gòu)買更合算,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)根據(jù)圖中提供的信息,回答下列問(wèn)題:
(1)一個(gè)水瓶與一個(gè)水杯分別是多少元?
(2)甲、乙兩家商場(chǎng)同時(shí)出售同樣的水瓶和水杯,為了迎接新年,兩家商場(chǎng)都在搞促銷活動(dòng),甲商場(chǎng)規(guī)定:這兩種商品都打八折;乙商場(chǎng)規(guī)定:買一個(gè)水瓶贈(zèng)送兩個(gè)水杯,另外購(gòu)買的水杯按原價(jià)賣.若某單位想要買5個(gè)水瓶和n(n>10,且n為整數(shù))個(gè)水杯,請(qǐng)問(wèn)選擇哪家商場(chǎng)購(gòu)買更合算,并說(shuō)明理由.(必須在同一家購(gòu)買)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一個(gè)三角形紙片ACB,其中∠ACB=90°,AC=8,BC=6,E、F分別是AC、AB邊上的點(diǎn),連接EF.(1)如圖1,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在AB邊上的點(diǎn)D處,且使S四邊形ECBF=4S△EDF,求ED的長(zhǎng);
(2)如圖2,若將紙片ACB的一角沿EF折疊,折疊后點(diǎn)A落在BC邊上的點(diǎn)M處,且使MF∥CA.
①試判斷四邊形AEMF的形狀,并證明你的結(jié)論;
②求EF的長(zhǎng);
(3)如圖3,若FE的延長(zhǎng)線與BC的延長(zhǎng)線交于點(diǎn)N,CN=2,CE=,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)0!表示自然數(shù)由1到n的連乘積,并規(guī)定0!=1,Anm=,nm=(n≥0,n≥m)例如1!=1,2!=1×2=2,3!=1×2×3=6,A53==60,C64==15,請(qǐng)回答以下問(wèn)題:
(1)求C32,A32;
(2)試根據(jù)C32,A32,2!的值寫出C32,A32,2!滿足的等量關(guān)系;試根據(jù)C43,A43,3!的值寫出C43,A43,3!滿足的等量關(guān)系;試根據(jù)C54,A54,4!的值寫出C54,A54,4!滿足的等量關(guān)系;
(3)探究Amn,Cmn與n!之間滿足的等量關(guān)系(不需要證明).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】把下列各式寫出省略加號(hào)的和的形式,并說(shuō)出它們的兩種讀法:
(1)(-20)-(+10)+(-5)-(-6);
(2)(+8.5)-(-2.9)-2.5+(-5.3).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AD是等腰△ABC底邊BC上的高,點(diǎn)O是AC中點(diǎn),延長(zhǎng)DO到E
使AE∥BC,連接AE。
(1)求證:四邊形ADCE是矩形;
(2)①若AB=17,BC=16,則四邊形ADCE的面積= ;
②若AB=10,則BC= 時(shí),四邊形ADCE是正方形。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為6,B是數(shù)軸上在A左側(cè)的一點(diǎn),且A,B兩點(diǎn)間的距離為10.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒6個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng)。
(1)運(yùn)動(dòng)1秒時(shí),數(shù)軸上點(diǎn)B表示的數(shù)是______點(diǎn)P表示的數(shù)是______;
(2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒4個(gè)單位長(zhǎng)度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、Q時(shí)出發(fā).求:
①當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí),點(diǎn)P與點(diǎn)Q相遇?
②當(dāng)點(diǎn)P運(yùn)動(dòng)多少秒時(shí),點(diǎn)P與點(diǎn)Q間的距離為8個(gè)單位長(zhǎng)度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)統(tǒng)計(jì)分析,某市跨河大橋上的車流速度v(千米/小時(shí))是車流密度x(輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到220輛/千米時(shí),造成堵塞,此時(shí)車流速度為0千米/小時(shí);當(dāng)車流密度不超過(guò)20輛/千米時(shí),車流速度為80千米/小時(shí),研究表明:當(dāng)20≤x≤220時(shí),車流速度v是車流密度x的一次函數(shù).
(1)求大橋上車流密度為100輛/千米時(shí)的車流速度;
(2)在交通高峰時(shí)段,為使大橋上的車流速度大于40千米/小時(shí)且小于60千米/小時(shí),應(yīng)控制大橋上的車流密度在什么范圍內(nèi)?
(3)車流量(輛/小時(shí))是單位時(shí)間內(nèi)通過(guò)橋上某觀測(cè)點(diǎn)的車輛數(shù),即:車流量=車流速度×車流密度.求大橋上車流量y的最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com