【題目】經(jīng)統(tǒng)計分析,某市跨河大橋上的車流速度v(千米/小時)是車流密度x(輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到220輛/千米時,造成堵塞,此時車流速度為0千米/小時;當(dāng)車流密度不超過20輛/千米時,車流速度為80千米/小時,研究表明:當(dāng)20≤x≤220時,車流速度v是車流密度x的一次函數(shù).
(1)求大橋上車流密度為100輛/千米時的車流速度;
(2)在交通高峰時段,為使大橋上的車流速度大于40千米/小時且小于60千米/小時,應(yīng)控制大橋上的車流密度在什么范圍內(nèi)?
(3)車流量(輛/小時)是單位時間內(nèi)通過橋上某觀測點的車輛數(shù),即:車流量=車流速度×車流密度.求大橋上車流量y的最大值.
【答案】(1)大橋上車流密度為100輛/千米時的車流速度48千米/小時;
(2)應(yīng)控制大橋上的車流密度在70<x<120范圍內(nèi);
(3)當(dāng)車流密度是110輛/千米,車流量y取得最大值是每小時4840輛.
【解析】
試題分析:(1)當(dāng)20≤x≤220時,設(shè)車流速度v與車流密度x的函數(shù)關(guān)系式為v=kx+b,根據(jù)題意的數(shù)量關(guān)系建立方程組求出其解即可;
(2)由(1)的解析式建立不等式組求出其解即可;
(3)設(shè)車流量y與x之間的關(guān)系式為y=vx,當(dāng)x<20和20≤x≤220時分別表示出函數(shù)關(guān)系由函數(shù)的性質(zhì)就可以求出結(jié)論.
試題解析:(1)設(shè)車流速度v與車流密度x的函數(shù)關(guān)系式為v=kx+b,由題意,得
,
解得:,
∴當(dāng)20≤x≤220時,v=﹣x+88,
當(dāng)x=100時,v=﹣×100+88=48(千米/小時);
(2)由題意,得
,
解得:70<x<120.
∴應(yīng)控制大橋上的車流密度在70<x<120范圍內(nèi);
(3)設(shè)車流量y與x之間的關(guān)系式為y=vx,
當(dāng)0≤x≤20時
y=80x,
∴k=80>0,
∴y隨x的增大而增大,
∴x=20時,y最大=1600;
當(dāng)20≤x≤220時
y=(﹣x+88)x=﹣(x﹣110)2+4840,
∴當(dāng)x=110時,y最大=4840.
∵4840>1600,
∴當(dāng)車流密度是110輛/千米,車流量y取得最大值是每小時4840輛.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線l與x軸相交于點M(3,0),與y軸相交于點N(0,4),點A為MN的中點,反比例函數(shù)y=(x>0)的圖象過點A.
(1)求直線l和反比例函數(shù)的解析式;
(2)在函數(shù)y=(k>0)的圖象上取異于點A的一點C,作CB⊥x軸于點B,連接OC交直線l于點P,若△ONP的面積是△OBC面積的3倍,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知A=2x2+3xy﹣2x﹣1,B=﹣x2+xy﹣1:
(1)求3A+6B;
(2)若3A+6B的值與x無關(guān),求y的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知多項式(2x2+ax-y+6)-(2bx22x 5y1).
(1)若多項式的值與字母x的取值無關(guān),求a、b的值.
(2)在(1)的條件下,先化簡多項式3(a-ab+b)-(a+ ab+ b),再求它的值.
(3)在(1)的條件下,求(b+a2)+(2b+a2)+(3b+a2)+…+(9b+a2)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC為直角三角形,∠C=90°,邊BC是⊙O的切線,切點為D,AB經(jīng)過圓心O并與圓相交于點E,連接AD.
(1)求證:AD平分∠BAC;
(2)若AC=8,tan∠DAC=,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線的頂點為P(﹣2,2),與y軸交于點A(0,3).若平移該拋物線使其頂點P沿直線移動到點P′(2,﹣2),點A的對應(yīng)點為A′,則拋物線上PA段掃過的區(qū)域(陰影部分)的面積為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形OABC中,BC∥AO,∠AOC=90°,點A,B的坐標(biāo)分別為(5,0), (2,6),點D為AB上一點,且BD=2AD,雙曲線y=(k>0)經(jīng)過點D,交BC于點E.
(1)求雙曲線的解析式;
(2)求四邊形ODBE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在矩形ABCD中,動點E從A出發(fā),沿方向運動,當(dāng)點E到達(dá)點C時停止運動,過點E做,交CD于F點,設(shè)點E運動路程為x, ,如圖2所表示的是y與x的函數(shù)關(guān)系的大致圖象,當(dāng)點E在BC上運動時,FC的最大長度是,則矩形ABCD的面積是( )
A. B. C. 6 D. 5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將正方形 ABCD (如圖 1)作如下劃分:
第1次劃分:分別連接正方形ABCD對邊的中點(如圖2),得線段HF和EG,它們交于點M,此時圖2中共有5個正方形;
第2次劃分:將圖2 左上角正方形AEMH再作劃分,得圖3,則圖3 中共有9個正方形;
(1)若每次都把左上角的正方形依次劃分下去,則第100次劃分后,圖中共有 個正方形;
(2)繼續(xù)劃分下去,第幾次劃分后能有805個正方形?寫出計算過程.
(3)按這種方法能否將正方形ABCD劃分成有2015個正方形的圖形?如果能,請算出是第幾次劃分,如果不能,需說明理由.
(4)如果設(shè)原正方形的邊長為1,通過不斷地分割該面積為1的正方形,并把數(shù)量關(guān)系和幾何圖形巧妙地結(jié)合起來,可以很容易得到一些計算結(jié)果,試著探究求出下面表達(dá)式的結(jié)果吧.
計算 .( 直接寫出答案即可)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com