【題目】問題原型:如圖①,在等腰直角三角形中,中點(diǎn)為,將線段繞點(diǎn)順時針旋轉(zhuǎn)得到線段,連結(jié),過點(diǎn)邊上的高,易證,從而得到的面積為

初步探究:如圖②,在中,,中點(diǎn)為.將線段繞點(diǎn)順時針旋轉(zhuǎn)得到線段,連結(jié).用含的代數(shù)式表示的面積,并說明理由.

簡單應(yīng)用:如圖③,在等腰三角形中,,中點(diǎn)為.將線段繞點(diǎn)順時針旋轉(zhuǎn)得到線段,連結(jié),直接寫出的面積.(用含的代數(shù)式表示)

【答案】初步探究:,理由見解析;簡單應(yīng)用:

【解析】

初步探究:過點(diǎn)邊上的高,首先根據(jù)題意證明,由此得出,然后根據(jù)旋轉(zhuǎn)性質(zhì)以及中點(diǎn)為求出,從而進(jìn)一步求出,最后進(jìn)一步計算三角形面積即可;

簡單應(yīng)用:過點(diǎn)AAMBCBC于點(diǎn)M,再過點(diǎn)邊上的高,首先根據(jù)題意證明,由此得出,然后通過等腰三角形性質(zhì)以及旋轉(zhuǎn)性質(zhì)和線段中點(diǎn)性質(zhì)求得,從而得出,最后進(jìn)一步計算三角形面積即可.

初步探究:,理由如下:

如圖,過點(diǎn)邊上的高,

90°,

由旋轉(zhuǎn)得:,90°,

90°,

90°,

,

,

,

中點(diǎn)為,

,

,

;

簡單應(yīng)用:

如圖,過點(diǎn)AAMBCBC于點(diǎn)M,再過點(diǎn)邊上的高,

∵在等腰△ABC中,AMBC,

BM=BC=,∠ABM+MAB=90°

由旋轉(zhuǎn)性質(zhì)可得:∠ABD=90°,BF=BD

∴∠ABM+DBN=90°,

∴∠MAB=DBN,

,

,

中點(diǎn)為,

,

,

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校七、八年級各有300名學(xué)生,近期對他們“2020年新型冠狀病毒”防治知識進(jìn)行了線上測試,為了了解他們的掌握情況,從七、八年級各隨機(jī)抽取了50名學(xué)生的成績(百分制),并對數(shù)據(jù)(成績)進(jìn)行整理、描述和分析.下面給出了部分信息:

a.七年級的頻數(shù)分布直方圖如下(數(shù)據(jù)分為5組:50x60,60x70,70x80,80x90,90x100):

b.七年級學(xué)生成績在80x90的這一組是:

80 80.5 81 82 82 83 83.5 84

84 85 86 86.5 87 88 89 89

c.七、八年級學(xué)生成績的平均數(shù)、中位數(shù)、眾數(shù)如下:

年級

平均數(shù)

中位數(shù)

眾數(shù)

七年級

85.3

m

90

八年級

87.2

85

91

根據(jù)以上信息,回答下列問題:

1)表中m的值為 ;

2)在隨機(jī)抽樣的學(xué)生中,防治知識成績?yōu)?/span>84分的學(xué)生,在 年級排名更靠前,理由是 ;

3)若各年級防治知識的前90名將參加線上防治知識競賽,預(yù)估七年級分?jǐn)?shù)至少達(dá)到 分的學(xué)生才能入選;

4)若85分及以上為“優(yōu)秀”,請估計七年級達(dá)到“優(yōu)秀”的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線軸交于點(diǎn)A,將點(diǎn)A向右平移2個單位長度,得到點(diǎn)B,點(diǎn)B在拋物線上.

1)求點(diǎn)B的坐標(biāo)(用含的式子表示);

2)求拋物線的對稱軸;

3)已知點(diǎn),.若拋物線與線段PQ恰有一個公共點(diǎn),結(jié)合函數(shù)圖象,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,為直徑,CD相較于點(diǎn)H,弧AC=AD

1)如圖1,求證:;

2)如圖2,弧BC上有一點(diǎn)E,若弧CD=CE,求證:;

3)如圖3,在(2)的條件下,點(diǎn)F在上,連接,延長FO于點(diǎn)K,若,求

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:

數(shù)學(xué)活動課上,李老師給出如下定義:如果一個三角形有一邊上的中線等于這條邊的一半,那么稱這個三角形為“智慧三角形”.

理解:

1)如圖,已知、上兩點(diǎn),請在圓上找出滿足條件的點(diǎn),使智慧三角形(畫出點(diǎn)的位置,保留作圖痕跡);

2)如圖,在正方形中,的中點(diǎn),上一點(diǎn),且,試判斷是否為智慧三角形,并說明理由;

運(yùn)用:

3)如圖,在平面直角坐標(biāo)系中,的半徑為1,點(diǎn)是直線上的一點(diǎn),若在上存在一點(diǎn),使得智慧三角形,當(dāng)其面積取得最小值時,直接寫出此時點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解2018年北京市乘坐地鐵的每個人的月均花費(fèi)情況,相關(guān)部門隨機(jī)調(diào)查了1000人乘坐地鐵的月均花費(fèi)(單位:元),繪制了如下頻數(shù)分布直方圖.根據(jù)圖中信息,下面3個推斷中,合理的是______.

①小明乘坐地鐵的月均花費(fèi)是75元,那么在所調(diào)查的1000人中至少有一半的人月均花費(fèi)超過小明;

②估計平均每人乘坐地鐵的月均花費(fèi)的范圍是60120元;

③如果規(guī)定消費(fèi)達(dá)到一定數(shù)額可以享受折扣優(yōu)惠,并且享受折扣優(yōu)惠的人數(shù)控制在20%左右,那么乘坐地鐵的月均花費(fèi)達(dá)到120元的人可享受折扣.

A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】詩詞是中國人最經(jīng)典的情感表達(dá)方式,也是民族生存延續(xù)的命脈.為了弘揚(yáng)詩詞國學(xué),我校開展了經(jīng)典詠流傳的活動.輕撥經(jīng)典的琴弦,我們將國家、民族、文化的美好精神文化傳承下來,賦予經(jīng)典文化以時代的靈魂.現(xiàn)我校初二(1)班為參加經(jīng)典詠流傳活動,班委會準(zhǔn)備租賃演出服裝、購買部分道具供班級集體使用.

1)班委會通過多方比較,決定用500元在A商店租賃服裝,用300元在B商店購買道具.已知租賃一套服裝比購買一套道具貴30元,同時所需道具比所需服裝多5套,則初二(1)班班委會租賃了多少套演出服裝、購買了多少套道具?

2)因后期參賽節(jié)目人員的調(diào)整,需要租賃更多的服裝,購買更多的道具.經(jīng)初步統(tǒng)計,最終需要租賃的演出服裝套數(shù)比(1)中的演出服裝套數(shù)增加了5a%a60),道具套數(shù)比(1)中的道具套數(shù)增加了2a%.初二(1)班班委會需要再次租賃服裝和購買道具,又前去與A商店、B商店議價,兩個商店都在原來的售價上給予了a%的優(yōu)惠,這次租賃服裝和購買道具總共用了279元,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平面直角坐標(biāo)系中,直線軸交于點(diǎn),與軸交于點(diǎn),拋物線經(jīng)過,兩點(diǎn),與軸的另一交點(diǎn)為點(diǎn)

1)求拋物線的函數(shù)表達(dá)式;

2)點(diǎn)為直線下方拋物線上一動點(diǎn).

①如圖2所示,直線交線段于點(diǎn),求的最小值;

如圖3所示,連接過點(diǎn),是否存在點(diǎn),使得中的某個角恰好等于2倍?若存在,求點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在學(xué)習(xí)函數(shù)時,我們經(jīng)歷了確定函數(shù)的表達(dá)式利用函數(shù)圖象研究其性質(zhì)——運(yùn)用函數(shù)解決問題的學(xué)習(xí)過程,在畫函數(shù)圖象時,我們通過列表、描點(diǎn)、連線的方法畫出了所學(xué)的函數(shù)圖象

同時,我們也學(xué)習(xí)過絕對值的意義

結(jié)合上面經(jīng)歷的學(xué)習(xí)過程,現(xiàn)在來解決下面的問題:

在函數(shù)y=|kx-1|+b中,當(dāng)x=0時,y=-2;當(dāng)x=1時,y=-3

(1)求這個函數(shù)的表達(dá)式;

(2)在給出的平面直角坐標(biāo)系中,請直接畫出此函數(shù)的圖象并寫出這個函數(shù)的兩條性質(zhì);

(3)在圖中作出函數(shù)y=的圖象,結(jié)合你所畫的函數(shù)圖象,直接寫出不等式|kx-1|+b≤的解集.

查看答案和解析>>

同步練習(xí)冊答案