【題目】在平面直角坐標(biāo)系中,拋物線與軸交于點A,將點A向右平移2個單位長度,得到點B,點B在拋物線上.
(1)求點B的坐標(biāo)(用含的式子表示);
(2)求拋物線的對稱軸;
(3)已知點,.若拋物線與線段PQ恰有一個公共點,結(jié)合函數(shù)圖象,求的取值范圍.
【答案】(1)點B的坐標(biāo)為;(2)對稱軸為直線;(3)當(dāng)時,拋物線與線段PQ恰有一個公共點.
【解析】
(1)向右平移2個單位長度,得到點;
(2)A與B關(guān)于對稱軸x=1對稱;
(3))①a>0時,當(dāng)x=2時,,當(dāng)時,x=0或x=2,所以函數(shù)與AB無交點;②a<0時,當(dāng)y=2時,,或當(dāng)時,;
解:(1)∵拋物線與軸交于點A,∴令,得,
∴點A的坐標(biāo)為,∵點A向右平移兩個單位長度,得到點B,
∴點B的坐標(biāo)為;
(2)∵拋物線過點和點,由對稱性可得,拋物線對稱軸為
直線,故對稱軸為直線
(3)∵對稱軸x=1,
∴b-2a,,
①a>0時,
當(dāng)x=2時,,當(dāng)x=0或x=2,
∴函數(shù)與AB無交點;
②a<0時,
當(dāng)y=2時,,
或當(dāng)時,;
∴當(dāng)時,拋物線與線段PQ恰有一個公共點;
(3)①當(dāng)時,則,分析圖象可得:根據(jù)拋物線的對稱性,拋物線不可能同時經(jīng)過點A和點P;也不可能同時經(jīng)過點B和點Q,所以,此時線段PQ與拋物線沒有交點.
②當(dāng)時,則.
分析圖象可得:根據(jù)拋物線的對稱性,拋物線不可能同時經(jīng)過點A和點P;但當(dāng)點Q在點B上方或與點B重合時,拋物線與線段PQ恰有一個公共點,此時即
綜上所述,當(dāng)時,拋物線與線段PQ恰有一個公共點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,是邊上的中線,點為線段上一點(不與點、點重合),連接,作與的延長線交于點,與交于點,連接.
(1)求證:;
(2)求的度數(shù);
(3)求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在中,為的中點,是邊上一動點,連接.若設(shè) (當(dāng)點與點重合時,的值為),.
小明根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗,對函數(shù)隨自變量的變化而變化的規(guī)律進(jìn)行了探究.
下面是小明的探究過程,請補(bǔ)充完整.
通過取點、畫圖、計算,得到了與的幾組值,如下表:
說明:補(bǔ)全表格時,相關(guān)數(shù)值保留一位小數(shù).
(參考數(shù)據(jù):) .
如圖2,描出剩余的點,并用光滑的曲線畫出該函數(shù)的圖象.
觀察圖象,下列結(jié)論正確的有 _ .
①函數(shù)有最小值,沒有最大值
②函數(shù)有最小值,也有最大值
③當(dāng)時,隨著的增大而增大
④當(dāng)時,隨著的增大而減小
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:⊙O的兩條弦,相交于點,且.
(1)如圖1,連接,求證:.
(2)如圖2,在,在上取一點,使得,交于點,連接.
①判斷與是否相等,并說明理由.
②若,,求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,AB=3,點E為對角線AC上一點,EF⊥DE交AB于F,若四邊形AFED的面積為4,則四邊形AFED的周長為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了應(yīng)對全球新冠肺炎,滿足抗疫物資的需求,某電機(jī)公司轉(zhuǎn)型生產(chǎn)呼吸機(jī)和呼吸機(jī),每臺呼吸機(jī)比每臺呼吸機(jī)的生產(chǎn)成本多200元,用5萬元生產(chǎn)呼吸機(jī)與用4.5萬元生產(chǎn)呼吸機(jī)的數(shù)量相等
(1)求每臺呼吸機(jī)、呼吸機(jī)的生產(chǎn)成本各是多少元?
(2)該公司計劃生產(chǎn)這兩種呼吸機(jī)共50臺進(jìn)行試銷,其中呼吸機(jī)為臺,生產(chǎn)總費用不超過9.8萬元,試銷時呼吸機(jī)每臺售價2500元,呼吸機(jī)每臺售價2180元,公司決定從銷售呼吸機(jī)的利潤中按每臺捐獻(xiàn)元作為公司捐獻(xiàn)國家抗疫的資金,若公司售完50臺呼吸機(jī)并捐獻(xiàn)資金后獲得的利潤不超過23000元,求的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題原型:如圖①,在等腰直角三角形中,,,中點為,將線段繞點順時針旋轉(zhuǎn)得到線段,連結(jié),過點作邊上的高,易證,從而得到的面積為.
初步探究:如圖②,在中,,,中點為.將線段繞點順時針旋轉(zhuǎn)得到線段,連結(jié).用含的代數(shù)式表示的面積,并說明理由.
簡單應(yīng)用:如圖③,在等腰三角形中,,,中點為.將線段繞點順時針旋轉(zhuǎn)得到線段,連結(jié),直接寫出的面積.(用含的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,三個頂點的坐標(biāo)分別為,,.
(1)請畫出向下平移6個單位長度后得到的;
(2)請畫出繞原點順時針旋轉(zhuǎn)后得到的;
(3)求出(2)中點旋轉(zhuǎn)到點所經(jīng)過的路徑長(結(jié)果保留根號和).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com